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ABSTRACT
When placed in a free sound field, a listener will obstruct
an incoming sound wave, and ears, head and body will
cause a linear filtering of the sound signal. This filtering
is completely and uniquely described by the Head-Related
Transfer Function (HRTF). In the general definition of this
function all linear properties of the sound transmission are
included. All proposed descriptors of localization cues,
such as inter-aural differences in arrival-time, in phase, in
sound level, as well as monaural cues, are embedded in
the HRTF. They can thus be derived from it, whereas the
opposite is not generally the case. Motivated by the rich
content of the HRTF and by the role of the outer ear to di-
rect, focus, and amplify sound, we present a new binaural
method for sound source localization in 3D to be deployed
for humanoid binaural hearing. Based on the content of
the collected sound signals, the distance between the mi-
crophones reconfigures automatically in order to optimize
the localization accuracy. Compared to other localization
algorithms, the proposed system is outperforming in terms
of localization precision and processing power.
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1 Introduction

The human hearing organ is a unique signal processor. It
comprises acoustic, mechanic, hydro-acoustic, and electric
components which, in total, realize a complex receiver and
high-resolution spectrum analyzer. Many specialized cells
in the auditory pathway contribute to the highly complex
signal processing - which by far exceeds the performance
of modern computers. The human external ear, pinna,
head and torso, transform an incoming sound wave into
sound-pressure signals at the two ear drums. The monaural
and inter-aural cues resulting from this process, i.e. spec-
tral cues and interaural time and level differences, are em-
ployed by the auditory system in the formation of auditory
events. All these cues are encapsulated within the HRTF.

It is generally agreed that sound pressures at the ear
drum, at the ear-canal entrance, blocked or open, or else-
where on the center line of the ear canal, have the full
spatial information and may be used for binaural record-

ing. Sound source localization techniques using binaural
recordings of artificial heads, showed better performances
the more human-like these artificial heads are. While sev-
eral localization techniques using microphone arrays have
been proposed, most of them require extensive processing
powers and are therefore not suitable for real-time robotic
platforms. Very few researchers have dealt with real-time
binaural localization utilizing a limited number of micro-
phones for a complete three-dimensional localization.

One sound source localization algorithm based on
HRTFs was introduced in [1]. This algorithm is known
as the cross-channel algorithm. It simply filters the mi-
crophone signal inside the left ear canal with the right
HRTF, and the right signal with the left HRTF. This tech-
nique was tested for horizontal localization only, using 2
and 4 microphones. In a related work, an enhanced algo-
rithm which combines cross-channel with cross-correlation
was proposed [2]. This algorithm computes a coarse az-
imuth angle based on inter-aural time difference (ITD) us-
ing cross-correlation. This coarse angle is utilized by the
cross-channel technique in order to enhance its accuracy
and diminish its complexity. The presented experimental
results are limited to the frontal horizontal plane. We will
reproduce this enhanced algorithm in this work and use it
as a benchmark for evaluating and comparing our proposed
sound locailzation technique.

We have lately introduced a sound source localiza-
tion technique based on HRTFs [3]. This method was re-
cently enhanced using Bayesian fusion in [4]. The use of
Bayesian information fusion considerably increased the lo-
calization resolution in a three-dimensional reverberant en-
vironment. Compared to existing techniques, the method
is able to localize, with higher accuracy, 3D sound sources
under high reverberation conditions. The simplicity of the
presented algorithm allowed a cost-effective real-time im-
plementation for robotic platforms.

One common and simple method for determining
the angle of arrival using pairs of microphones is to esti-
mate the time delay D between two microphone signals
x1 and x2. This time delay is commonly computed us-
ing the generalized cross-correlation function. In order to
improve the accuracy of the delay estimate D̂, it is de-
sirable to pre-filter x1 and x2 prior to cross correlation.
The signals xi are therefore filtered through specified fil-
ters Hi yielding the outputs yi for i = 1, 2. Hence,
the generalized correlation between x1 and x2 is given
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by R̂Gy1y2(τ) =
∫ +∞
−∞ W (f)Ĝx1x2(f) exp

j2πfτ df where
W (f) = H1(f)H

∗
2 (f) denotes the general frequency

weighting and thhe function Ĝx1x2
(f) is an estimate of

the cross power spectrum obtained from finite observations
of x1 and x2. Hence, the time delay D is evaluated as
D = argmax

τ

(
R̂Gy1y2(τ)

)
.

Indeed, depending on the particular form of W (f)
and prior information available, it may also be necessary
to estimate the generalized weighting. For example, when
the role of the pre-filters is to accentuate the signal passed
to the correlator at those frequencies at which the coher-
ence or signal-to-noise ratio (SNR) is highest, when W (f)
can be expected to be a function of the coherence or signal-
and-noise spectra which must either be known or estimated.
Table 1 illustrates some common generalized cross corre-
lation weightings The Phase Transform (PHAT) defines a
weighting function which is the inverse of the cross power
spectral density of the signals. In this technique no individ-
ual frequency dominates allowing thus the effects of rever-
beration to average out. However since it is an inverse of
the cross power spectral density, it causes an increase in er-
rors where the signal power is low. On the other hand, the
Smooth Coherence Transform (SCOT) defines a weighting
function which is the inverse square root of the individual
power spectral densities of each received signal. Thereby
including contributions from the correlation functions of
both left and right signals. The Maximum Likelihood (ML)
weighting function minimizes the variance of the time de-
lay estimation. We will use ML function to benchmark and
evaluate the performance of our proposed algorithm.

Using the generalized correlation method described
above, several binaural models have been put forward to
simulate the localization of a sound source in the presence
or absence of further, incoherent sound sources, e.g. [5].

In this paper we present a novel adaptive hardware

Table 1. Various generalized cross correlation weighting
functions.

Window Weighting func-
tions W(f) Scope

KORR 1
Direct correla-
tion without a
window

SCOT
(Smoothed
Coherence
Transform)

1
Gx1x1 (f)Gx2x2 (f)

Suppresses
tonal fractions

PHAT
(PHAse
Transform)

1
|Gx1x2

|

Uses only the
phase of the
cross spectrum

ML
(Maximum-
Likelihood)

γ12
Gx1x2

|1−γ12| , γ12 =
Gx1x2√

Gx1x1
Gx2x2

Minimizes the
variance of
the time delay
estimation

setup which classifies incoming sound signals, adapts
the inter-microphone distance, and extracts estimates of
HRTFs from incoming signals. Bayesian fusion is then
applied to improve the localization precision. The HRTFs
of this work are taken from the online CIPIC database. A
highly accurate interpolation scheme we have introduced in
[6] is then used to obtain a high spatial-resolution database
of 28800 HRTFs with one transfer function every 1◦ in
azimuth, covering an elevation from -20◦ to 60◦.

2 Sound Source Localization System

The proposed sound source localization system deploys
four microphones, two placed inside the left and right ear
canals, and two outside the ear canals of a Knowles Elec-
tronics Mannequin for Acoustic Research (KEMAR). The
mannequin is equipped with two silicon outer ears. The
outer microphones are allowed to move collinear with re-
spect to the inner ones. The localization system is di-
vided into three main subsystems: right monaural, central
binaural, and left monaural. The left and right monau-
ral systems collect the inner and outer signals map them
to the frequency domain using Short Time Fourier Trans-
form (STFT) and then divides them to extract the embed-
ded HRTFs. The central binaural system collects both sig-
nals inside the ear canals and processes them to determine
the corresponding HRTF. These structures are illustrated in
Figure 1. The localization system model is shown in Fig-
ure 2. More details about the overall system can be found
in [4].

3 Audio Signal Classification System

Acoustic signals are classified into five main categories:
speech, music, harmonic, non-harmonic and silence [7]. To
determine the silence segment, the short-time energy func-
tion is used. The incoming acoustic signal entering the ear
canal is classified as music if it satisfies one of the follow-
ing three conditions: its fundamental frequency is small, its
Zero Crossing Rate (ZCR) is small, or the variation in its
ZCR is small. The acoustic signal is classified as speech
if its energy is maximum during a speech and is minimum
during a non-speech segment, with the ZCR behaving op-

Figure 1. Experimental setup showing the KEMAR head
equipped with inner and outer microphones.
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Figure 2. Proposed sound source localization system using
4 microphones.

posite to energy. If harmonic signals cannot be determined
as speech or music, they are classified as harmonic. More
about signal classification could be found in [8]. Once the
audio signals are classified as illustrated in Figure 3, the
inner-outer microphone distance is adjusted accordingly in
order to maximize the localization efficiency based on the
detected signal content.

4 Dynamic Microphone Reconfiguration
System

In our older setup, the distance between the inner and outer
microphone was fixed [4]. This has limited the localization
accuracy of the proposed algorithm because it did not take
into consideration the relationship between the frequency
content of the microphone signals and the separation be-
tween the inner and outer microphones. When the phase
delay between the two microphone signals exceeds π, spa-
tial aliasing occurs. This results in a wrong interpretation
of the time delays, which in turn results in less accurate lo-
calization. Consider a broadband signal, with a maximum
frequency fmax, incident on a pair of microphones at an
angle θ. In order to restrict the phase difference between
the pair of microphones to be ≤ π, at the maximum fre-
quency, we let 2πfmaxτ ≤ π, where τ = (d/v)sin(θ) is
the time delay between the both microphones. The vari-
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Figure 3. Audio signals classified into five different groups:
silence, pure speech, pure music, speech + noise (non-
harmonic sound) and speech + music (harmonic sound).

able d is the distance between microphones, v is the speed
of sound. After rearranging these terms, we get

d ≤ 1

2

(
v

fmax

)
1

sin(θ)
(1)

The incident angle of arrival is usually not known and can-
not be controlled, we therefore take the worst-case scenario
by setting θ = 90. Since the maximum frequency content
corresponds to the smallest wavelength present in the sig-
nal, we have fmax = λmin. Consequently, d ≤ λmin/2,
which means that the distance between the outer and in-
ner microphones should not exceed half the smallest wave-
length of the signal. Meeting this condition is a prerequi-
siste for avoiding spatial aliasing and improving the local-
ization performance. It should be mentioned here, that in
the extreme case where two microphones are too close to
each others, they will have very small TDOA’s. This intro-
duces quantization errors in TDOA computation which in
turn results in large localization errors. On the other hand,
if two microphones are relatively far from each other, they
are less likely to produce a good correlation.

5 Performance Assessment

5.1 Simulation and Experimental Results

We simulate the case where both the left and right outer
microphones are allowed to move with respect to the inner
ones. Four different signals are used to simulate the classi-
fications done in Figure 3. These signals comprise a pure
male speech sound without noise, a pure piano solo sound,
a piano sound accompanied with a singer sound, and a fe-
male sound corrupted with noise.
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Four different simulation tests have been conducted.
The first test consisted of the pure male speech signal fil-
tered by 100 different HRTFs. These where randomly cho-
sen from the pool of 28800 different HRTFs. Out of the
100 different locations, 50 were chosen to be having zero
elevation. Similarly, the second, third and fourth tests con-
sisted of filtering each of the pure piano, the piano with
singer, and the noise-corrupted female sounds, each with
100 different HRTFs.

To simulate the reverberation in our room environ-
ment, the image method for room acoustics was used. The
simulation setup and room dimensions were defined to
match the experimental room environment. A room size
of 9.5m × 7m × 4m was considered. The data received
at each microphone was obtained by convolving the broad-
band source signal with the corresponding transfer func-
tions resulting from the image method between the sources
and microphones positions. To simulate real-life environ-
ments, high reverberations, i.e. echoes 20dB below the sig-
nal level, were added to the signal. A sampling frequency
of 44.1kHz was used.

The proposed algorithm has to first classify the sig-
nals, then automatically adjust the microphones to the ap-
propriate mic-to-mic distance in order to satisfy equation 1,
and finally run the Bayesian fusion based algorithm for de-
tecting the azimuth and elevation of the now-playing sound
signal. Figure 4 shows the mean angular error for different
sound signals and mic-to-mic separations.

The average male voice used shows power peaks near
700 Hz in its audio spectrum. For this frequency value
the wavelength is about 48cm. This value bounds the dis-
tances between the inner and outer microphones to be less
than 24cm as dictated by equation 1. Distances above this
value, would result in spatial aliasing and therefore increase
the localization errors. As illustrated by the blue line (cir-
cles) of Figure 4, in the vicinity of 24cm the angular error
reaches a global minimum of 1.24◦. Below 24cm the alias-
ing error increases slowly. When the distance between the
two microphones exceeds 24cm, the error increases con-
siderably due to font-back confusions.

For the pure piano solo sound used in this work, the
highest frequency piano musical note, namely the C8 note
has a fundamental frequency centered at 4.18kHz, this
value requires the mic-to-mic distance to be approximately
less than 4cm to avoid spatial aliasing. Above this distance
the mean angular error increases. This is illustrated by the
green line (squares) of Figure 4.

The sound of a piano accompanied by a male singer
shows power peaks around 1.81kHz. This value cor-
responds to a maximum mic-to-mic distance of approxi-
mately 9.4cm. Above this distance the error increases as
illustrated by the red line (crosses). The female speech
corrupted with noise showed power peaks around 480Hz.
This corresponds to a maximum microphone separation of
35cm. Above this value the error increases as depicted by
the black line (stars) in Figure 4.

In our household experimental setup, four different

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

Microphone Separation Distance  [cm]

M
ea

n
 A

n
g
u

la
r 

E
rr

o
r 

 [
D

eg
re

e]

 

 

Pure Music (Simulation)

Pure Music (Experimental)

Pure Speech (Simulation)

Pure Speech (Experimental

Speech + Music (Simulation)

Speech + Music (Experimental)

Speech + Noise (Simulation)

Speech + Noise (Experimental)

Figure 4. Mean angular error as a function of the distance
between the inner and outer microphone. Reverberation
time = 0.38s. SNR = 20dB.

tests have been conducted in order to validate the sim-
ulation results. Each of the four different sound signals
has been placed at 100 different angles around a KEMAR
head and torso in a reverberant room. The level of rever-
beration in the room was experimentally measured to be
RT = 0.38s. To keep a fair comparison with the simula-
tion setup, each of the recordings was 350ms long. Each
microphone was placed 26mm inside the ear canal of the
dummy head. The experimental results follow the trends of
the simulation results, with minor differences due to elec-
tronic noise and room geometric mismatches as illustrated
by the dashed lines in Figure 4. Both simulation and exper-
imental results showed that the proposed technique is less
sensitive to aliasing errors and more affected by separations
greater than the optimal distance. This is due to the fact that
bigger separations introduce more differences between the
outer and inner microphone signals mainly due to reflec-
tions, this makes the process of extracting the HRTFs less
accurate, and localization more erroneous.

5.2 Performance Comparison with State-of-the-Art

In this part of our study, two angle of arrival estimation
techniques were reproduced and used as a benchmark to
our proposed system. These are the ML technique and the
enhanced cross-channel technique. For clarity of presen-
tation, experimental results of only the female speech cor-
rupted with noise will be used.

The experimental test consisted of having 100 broad-
band sound signals filtered with 100 different HRTFs. For
each microphone separation distance, ranging from 1cm
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Figure 5. Experimental mean angular error of the proposed
method compared to the ML and cross-channel techniques.
Reverberation time = 0.38s. SNR = 20dB.

till 50cm, the noisy female speech signal was played over
a speaker at 50 different angles in the front hemisphere
and 50 angles in the back hemisphere around the humanoid
head. Figure 5 illustrates the results. Both simulation and
experimental results showed that the proposed method is
more tolerant to reverberations and more robust to alias-
ing errors compared to the cross-channel technique. The
combined system with Bayesian fusion and adaptive mi-
crophone configuration outperforms all other techniques.
This improvement is justified by the fact that the Bayesian
fusion method draws intelligence from a conditional prob-
ablity table (CPT). This intelligence is not available for the
ML and cross-channel techniques. The ellipse in Figure
5 pinpoints the performance of the Bayesian fusion algo-
rithm when the inter-microphone distance is fixed to 5cm
as in our previous work [4]. A localization accuracy of al-
most 11◦ is achieved, by allowing the outer microphone
to adjust its position. Similar to the other two methods,
the ML technique showed a minimum mean angular error
around 35cm. However, this error is too high compared to
the other two methods. This is mainly due to the fact us-
ing 4 microphones to localize sound in 3D results in front-
back reversal errors which limits the performance of the
ML technique considerably.

6 Conclusion

This paper described a robust binaural sound source local-
ization technique based on HRTFs. The novel adaptive
hardware setup classifies incoming sound signals, adapts

the inter-microphone distance, and extracts estimates of
HRTFs from incoming signals. Bayesian fusion is then
applied to improve the localization precision. Using only
four adaptive microphones, the proposed system showed
higher three-dimensional localization accuracy, in the pres-
ence of noise and reflections, compared to state-of-the-art
methods using the same number of microphones. Based on
the presented algorithm, several venues for future work are
to be considered. Using wavelet transform instead of STFT,
adding echo cancellation to the system and making use of
source separation algorithms will make the localization and
separation of multiple concurrent sound sources possible.
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