A HIGH-YIELD PROCESS AND LOW-NOISE STRUCTURE FOR SILICON NEURAL PROBE

Seung Jae Oh, Jong Keun Song, Jin Won Kim, and Sung June Kim

Nano Bioelectronics and Systems Research Center, School of Electrical Engineering, Seoul National University, Seoul 151-742, Korea. E-mail : kimsj@snu.ac.kr

Abstract

However, the promise of such micromachined devices is limited by inadequate electrode performance. In the design of silicon neural probe, the noise characteristic is a major issue, since it determines the required signal-to-noise ratio (SNR) of the recorded signal. Major noise source is electromagnetic interference (EMI) from external factors such as 60-Hz power line, coupled through various parasitic capacitances. Proper shielding, grounding and isolation are necessary, in order to reduce the coupling of EMI. In a silicon neural probe, careful layout design is required [8].

This paper focuses on the design and fabrication of the silicon neural probe with two improvements: the design of process for improvement in fabrication yield and the integration of ground layer for reduction of electromagnetic noise. First, we have found that the fabrication yield is determined by a wet-etch step for bulk micromachining on back side of wafer. For the purpose of improve fabrication yield, a design of mask was modified that all probes are linked by micro tabs located between probes and bars on the wafer. The micro tab was used to hold probes on wafer during wet-etch. Second, insertion of an internal ground layer located below interconnection was found to dramatically reduce the electromagnetic noise. Result was described that this probe showed a favorable performance with respect to impedance spectra, noise reduction and acute neural recording. Measured power spectral density (PSD) of noise in recorded signals showed a 55dB reduction of noise at 120Hz, which is on of the harmonic frequency of 60Hz interference. These silicon-based electrode techniques provide the advanced technology for obtaining high-performance neural interface.

Key Words
silicon neural probe, neural prosthesis, power spectra density, neural recording

1. Introduction

Micromachined silicon neuroprosthetic devices can be designed and fabricated to permit recording and stimulation of specific sites in the nervous system to restore their function, lost due to disease or trauma. These silicon neural probes offer great promise for treating neurological disease and providing methods for a long term study of the central nervous system [1-2]. They have been used to record field potentials or single unit activity in the brain [3]. The number of microelectrodes on these silicon probes combined with their spatial density and resolution contributes to the study of neuronal activity in the various regions of the brain [4]. Some devices have on-board signal processing circuitry [5], including telemetry [6], and many of them have multiple electrodes some with complex three-dimensional array [7]. However, the promise of such micromachined devices is limited by inadequate electrode performance. In the design of silicon neural probe, the noise characteristic is a major issue, since it determines the required signal-to-noise ratio (SNR) of the recorded signal. Major noise source is electromagnetic interference (EMI) from external factors such as 60-Hz power line, coupled through various parasitic capacitances. Proper shielding, grounding and isolation are necessary, in order to reduce the coupling of EMI. In a silicon neural probe, careful layout design is required [8].

We will describe another important issue on silicon probe technologies that are the development of high-yield fabrication process for mass production of silicon probe. Michigan University group showed CMOS compatibility to incorporate on-chip circuitry on the probe by using boron implant process with high-yield fabrication. We previously reported on the development of a silicon probe fabricated by deep-Si dry etch and wet etch that it is able to obtain over a 50µm shank thickness [10]. However, a fabrication yield of this method is limited by a wet-etch used to release the devices from silicon wafer. This paper reports the development of new design and fabrication process of noise insensitive silicon probe fabricated by modified wet etch technique for increasing process yield.

2. Material and Methods

2-1. Design and Fabrication

Fig. 1. A schematic view of new mask design contained different probe type for high-yield process.
The silicon neural probe is fabricated from <100>-oriented, p-type silicon, polished on both the front and back. The design of mask is changed that all probes are linked by micro tab located between probes and bars on the wafer. Fig. 1 shows the mask design where probes are connected by micro tab. Triple dielectric layers (SiO₂ 1000Åm / Si₃N₄ 2000Åm / SiO₂ 5000Åm) are used as the insulating layer. Poly-Si is deposited using a Low Pressure Chemical Vapor Deposition (LPCVD), at 625°C and 300mTorr, to a thickness of 3500Åm. This layer is then doped, in a furnace at 950°C, with POCl₃ to a concentration of 10²¹ cm⁻³, and patterned for recording sites and interconnections. The same type of triple dielectric layers, as described above, is then deposited on top. Subsequently, the deep-Si etching is performed using the Bosh process, to a depth of 50µm. This etching depth determines the final shank thickness of the neural probe. To attain improvement of fabrication yield, a new wet-etch technique is developed. In order to protect silicon surface from KOH contact, shielded Teflon bottle is used during wet-etch step (Fig. 2.) Nitride film is deposited on the side of electrode to protect surface and side of silicon shank, and then it is removed by reactive ion etching after wet-etch step. The micro tab can hold probes each by each silicon wafer during and after wet etching, which contributes to uniformity of thickness and high-yield fabrication.

![Diagram](https://example.com/diagram.png)

Fig. 2. Flow diagrams of wet-etch process using a sealed Teflon bottle to protect surface and side of silicon probe from KOH.

The major noise sources can be grouped into two categories. One is EMI from external sources such as power lines or monitor. The other source is intrinsic noise, following the standard Johnson noise equation for the RMS voltage noise of resistor. In addition to noise considerations, electrode impedance reduction is required, because most of signal voltage would drop across the largest between electrode and input impedance of the external system. To evaluate electrochemical performance, the impedance spectra are measured by a PC-driven potentiostat. All electrochemical measurements are performed in 0.1M phosphate buffered saline (pH=7.4) using the electrolyte in a three-electrode cell. The measurements are performed with AC signal between the counter electrode and a doped poly-Si electrode used as the working electrode. To evaluate improvement due to the use of internal grounding, we measured power spectral density (PSD) of noise in recorded signal. PSD is the frequency response of a random or periodic signal. It tells us where the average power is distributed as a function of frequency. The PSD of signal is measured to evaluate the performance of internal ground layer located over silicon substrate. This PSD is calculated from rate histogram of the signal. The final PSD value is the average of all spectra for the separate interval of bin length. In PSD measurement, the equivalent circuit of this silicon probe with internal ground layer immersed in an electrolyte solution is shown in Fig. 3.

![Diagram](https://example.com/diagram.png)

Fig. 3. A cross-sectional model of silicon probe. The probe is immersed in an electrolyte and exposed to 60-Hz noise.

Neural recording experiments are used to verify the electrophysiological performance of the silicon neural probe. Sprague-Dawley rats (250g) are anaesthetized with urethane (1g/kg, i.p.). All animals used in neural recording are treated in accordance with academic animal research guidelines of Seoul National University. The silicon neural probe is driven into the target region of the brain by a micromanipulator. A multi-channel acquisition system (Plexon Inc., Dallas, TX) is used to record the extracellular neural activity in-vivo. The signal is amplified for a gain of 10000; bandpass filtered at 150Hz...
to 5 kHz, and passed to a personal computer for storage and analysis.

3. Results and Discussion

Fig. 4 is optical picture showing that silicon neural probe can be fabricated by new high-yield process without the loss of silicon probe. A large number of probes are fabricated in a single wafer as shown by the projection light micrograph (Fig. 4A).

![Projection Light Micrograph](image)

Fig. 4. (A) A projection light micrograph of whole wafer contained a large number of probes. (B) A magnified view of the marked area in the upper image. Scale bars are 10mm.

This design of process is capable of high-yield exceeding 95 % of very small and various structures on the same substrate. Each of probes has a micro tab with a break-away connector which attached them to the wafer for holding. All probes are not separated from silicon wafer even after bulk micromachining on the back side of the substrate in KOH solution. All etching processes are highly selective and the thickness of the probe can be controlled very easily. Probes are 5 mm and 10mm long and 50 µm x 128 µm in cross-section of single shank. Each probe has eight recording sites with edge-to-edge spacing of 150 µm and 250 µm, respectively. Fig. 5A shows a scanning electron microscopy (SEM) view of the probe as well as a magnified view of the tip. The probe tip is tapered to less than one micron for easy penetration into the neural tissue.

![SEM View](image)

Fig. 5. (A) SEM views of electrode tip and sites. (B) A whole picture of neural probe mounted on PCB with connectors.

Fig. 6 shows the difference of power spectra density of the signal from probes without ground layer, and fabricated internal ground layer, respectively. Y axis is power spectra density with scale unit dB.

![Power Spectra Density](image)

Fig. 6. Plots of power spectra density. Plot (A) is taken from control probe without ground layer, Plot (B) is taken from test probe with internal ground layer located below the lower dielectric layers.
This shows that the frequency responses of these signals are generally different. Fig. 6 A looks more flat across the low frequency band, however, Fig 6 B shows clearly the effects of internal ground on reduction of external EMI noise such 60-Hz harmonic frequency. In order to evaluate of electrochemical characteristics, Impedance spectra is measured at 1 kHz. The area of the electrode site is 30 x 30µm², and 0.1% phosphate buffered saline is used as the electrolyte. The impedance of the electrode is 1.96 ± 0.18 MΩ (n=13), which is slightly lower than the impedance of a gold site in the same area. The phase is –87.2 ± 3° (n=13). This result indicates that the doped poly-Si is dominated by its capacitive component. A capacitive characteristic of an electrode is helpful when the microelectrode serves in the recording of neural signals.

The recording sites of the probe can be determined in-vivo by monitoring the unit neural activity and the amplitude versus the depth distribution of the evoked potentials. To ensure that the electrode interfaces well with the external recording system, neural activity is recorded using the silicon neural probe, and is shown in Fig. 7. The electrode sites with an area of 900µm² and separated from each other by 300 µm, are located perpendicularly through the cortex. The recording sites residing in cell body layers provide units with very large signal-to-noise ratios (SNR).

Fig. 7. Acute recording from the somatosensory cortex of rats. The action potentials being recorded at the different sites are shown to be independent.

4. Conclusion

This study shows that two improvements on silicon probe provide low-noise recording and high-yield fabrication process. The probe was fabricated by new fabrication method, which allowed for high-yield process to minimize loss of silicon probe during wet-etch step. Result was described that this probe showed a favorable performance with respect to impedance spectra, noise reduction and acute neural recording. These silicon-based electrode techniques provide the advanced technology for obtaining high-performance neural interface.

5. Acknowledgement

This work was supported by the Korean Science and Foundation (KOSEF) through Nano Bio-electronics and Systems Research Center.

References

