LINEAR TIME-VARYING FEEDBACK LAW FOR VEHICLES WITH ACKERMANN STEERING

Suruz Miah,* Peter A. Farkas,** Wail Gueaieb,** Hicham Chaoui,*** and Mohammad Anwar Hossain****

Abstract

In this paper, we propose an optimal state-feedback control law for addressing point stabilization and tracking problems of nonholonomic vehicles with Ackermann steering in a unified manner. Unlike other feedback controllers that perform dynamic linearization of vehicle models, the proposed optimal feedback controller provides the state-feedback control to the original nonlinear vehicle model for achieving excellent state-tracking performance. In addition, nonlinear control techniques suggested in the literature to date require that the desired trajectory of the robot is generated using persistently excited inputs. This may be too restrictive and non-realistic hypothesis to mimic a real scenario. Here, we address this issue by developing a smooth state-feedback control law that is formulated by modifying the classical Pontryagin’s minimum principle. The proposed control law can be applied for solving control problems of a general class of nonlinear affine systems. The proposed control scheme offers a modular solution to other control techniques for a large number of mobile robot applications. The theoretical results are validated through computer simulations.

Key Words

Ackermann Steering, Hamiltonian, Mobile Robots, Optimal Feedback Gain

1. Introduction

Global asymptotic solutions of point stabilization and tracking problems of nonlinear affine systems are still among the principle interests to the control community. A nonholonomic vehicle with Ackermann steering is a nonlinear affine system where the Brockett’s theorem proves the nonexistence of smooth state feedbacks for its asymptotic stabilization on fixed configurations as pointed out in [1]. Here, we propose a promising alternative solution to the Brockett’s problem for a nonholonomic car-like vehicle (Ackermann steering vehicle) with a linear time-varying state-feedback law. The proposed optimal feedback law is determined by modifying the classical Pontryagin’s minimum principle [2]. By doing so, both point stabilization and trajectory tracking problems of a nonholonomic vehicle are addressed as a unified manner. In addition, the motivation of the proposed linear time-varying feedback law stems from the fact that most of the research work suggested in the literature are tailored towards developing complex nonlinear control laws to address tracking problems of a simple unicycle-like robots. These control laws are powerful but they generally may be quite complex. As such, we emphasize that there exists a linear time-varying control law to address the tracking problem of nonlinear affine systems (in this paper, we consider vehicle with Ackermann steering), where the control law is easy to understand in the sense that all what a vehicle needs to track a pre-defined trajectory is a linear feedback operator which will be detailed in Section 3. Note that the proposed control law can easily be coupled with navigation techniques for solving the robot navigation problem [3], [4].

Nonlinear feedback laws enable nonholonomic mobile robots to track a pre-defined trajectory, to stabilize on fixed configurations, or to synchronize among multiple robots [5], [6]. These laws have been explored through a variety of control techniques, such as differential flatness and back-stepping [7]–[9], nonlinear control coupled with data fusion algorithms [10], [11], and sliding mode control [12]–[14]. Recently, the trajectory tracking and the set-point stabilization problems of unicycle-type vehicles have been addressed in [15]. A few papers have addressed the trajectory tracking problem of nonlinear affine systems using time-varying feedback laws coupled with heuristics (see [16]–[18]). These techniques are quite powerful to solve trajectory tracking problems of nonlinear affine systems but require complex feedback law even for a simple unicycle-like affine systems [19]. In some cases, the satisfactory tracking performance is achieved at the cost of vehicle’s model simplification, see [20], [21], for example. Model predictive control techniques are quite popular and have been extensively used for solving tracking
problems of mobile robots in the optimal control literature, see [22]–[24], however, they suffer from defining appropriate feedback laws for partially observed states. Authors in [25]–[27] have recently adopted model predictive control laws for solving the tracking problems of nonholonomic systems. Their results are satisfactory at the cost of hardware needed to implement the control laws. Some researchers tackled tracking and stabilization problems separately. See [28]–[31], for tracking problems, and [32]–[34] for stabilization problems. The trajectory tracking problem for nonholonomic vehicles has been tackled by transverse function approach [35]. A salient feature of this approach is the obtention of feedback laws that unconditionally achieve the practical stabilization of arbitrary reference trajectories, including fixed points and non-admissible trajectories. However, this approach requires comprehensive tuning of transverse function parameters.

As a footnote, the aforementioned control techniques yield satisfactory tracking or stabilization performance. They either require the model simplification by tuning its parameters or need extensive derivations for feedback law even to solve problems of a simple unicycle-like vehicle. To overcome some of these issues, such as the model simplification, for example, Miah et al. in [36], [37] introduced both time-varying and time-invariant feedback operators for solving tracking problems of a class of semi-linear and affine nonlinear dynamic systems using Pontryagin’s minimum principle. These ideas are then exploited in solving tracking and regulation problems of differential drive mobile robots in indoor environments (see [38], [39], for example). This paper advances previous theoretical ideas using vehicles with Ackermann geometry in tracking a predefined trajectories or in parking on a fixed configuration in finite time (pre-defined). The work presented in [38] deals with an output (measurement) feedback control law as opposed to state-feedback control law presented in this manuscript. In [39], a state-feedback control law coupled with estimation is presented. As can be noted, both papers deal with the problems of differential drive mobile robots. The current manuscript emphasizes on how the tracking and stabilization problems can be addressed for a conventional vehicle with Ackermann steering using a state-feedback control law. In addition, here we provide the proof of existence of such a control law for a general class of nonlinear affine systems. Note that the proposed control law can be coupled with supervisor controllers, such as the one presented in [40], to tackle vehicle slipage, which is not considered here to avoid additional technical challenges.

The rest of the paper is outlined as follows. Section 2 illustrates the kinematic model of a vehicle with Ackermann steering followed by the formulation of stabilization and trajectory tracking problems as a unified manner. The main contribution of this paper, which is the optimal smooth time-varying state-feedback law, is described in Section 3. A thorough evaluation of the current work with some numerical computer simulations is presented in Section 4. Finally, conclusions with some future research avenue are drawn in Section 5.

2. Vehicle Model and Problem Formulation

Figure 1 shows the kinematic model of an Ackermann steering vehicle, where \((x_r, y_r)\) and \((x_f, y_f)\) are the active points of the rear and the front wheels, respectively. Without loss of generality, its configuration at time \(t \geq 0\) is represented by the vector \(q(t) = [x(t) \ y(t) \ \theta(t) \ \phi(t)]^T \in \mathbb{Q} \subset \mathbb{R}^4\), where \((x(t), y(t))\) is the Cartesian position of the midpoint of the line of length \(2l\) connecting two axles dividing at their midpoints, \(\theta(t) \in (-\pi, \pi]\) is the body orientation with respect to \(X\)-axis, and \(\phi(t) \in (-\pi/2, \pi/2)\) is the steering angle of the front wheels with respect to the vehicle body. The vehicle is subject to nonholonomic constraints given by

\[
\begin{align*}
\dot{x} &\sin(\theta + \phi) - \dot{y} \cos(\theta + \phi) - l \dot{\theta} \cos \phi = 0 \\
\dot{x} \sin \theta - \dot{y} \cos \theta &= 0
\end{align*}
\] (1)

which act on each wheel to prevent it from slipping laterally. The constraints (1) can be used to derive the vehicle’s (front wheel driving) kinematic model

\[
\dot{q}(t) = \begin{bmatrix}
\cos(\phi(t)) \cos(\theta(t)) & 0 \\
\cos(\phi(t)) \sin(\theta(t)) & 0 \\
\frac{1}{l} \sin(\phi(t)) & 0 \\
0 & 1
\end{bmatrix} \begin{bmatrix}
\nu_f(t) \\
\omega_f(t)
\end{bmatrix} = F[q(t)]u(t) (2)
\]

where the vehicle’s control input vector \(u(t) \equiv [\nu_f(t) \ \omega_f(t)]^T \in \mathcal{U} \subset \mathbb{R}^2\), with \(\nu_f(t)\) and \(\omega_f(t)\) being the front wheels’ linear and steering velocities, respectively. In addition, due to the vehicle’s limit on its velocities, the inputs are constrained as \(|\nu_f(t)| \leq \nu_f^{\text{max}}\) and \(|\omega_f(t)| \leq \omega_f^{\text{max}}\) for \(t \in I \equiv [0, t_f]\), \(t_f > 0\), where \(\nu_f^{\text{max}}\) and \(\omega_f^{\text{max}}\) is the maximum linear and steering velocities of the vehicle. Let \(q^d(t)\) be the desired (reference) trajectory that the vehicle is supposed to track and \(e(t) = \|q(t) - q^d(t)\|_2\) denotes its position tracking error, for \(t \in I\). The objective is to find the optimal control input \(u(t) \in \mathcal{U}_d \subset \mathbb{R}^2\) that governs the state trajectory \(q(t) \in Q\) while minimizing the average cumulative position tracking error \(E_{\text{avg}} = \frac{1}{t_f} \int_0^{t_f} e(t) dt, \ t_f > 0\).
Given the vehicle’s velocity constraint and its nonholonomic constraint (1), the problem can be stated as follows:

$$\inf_{\{q \in \mathcal{Q}, u \in \mathcal{U}_{ad}\}} \mathcal{E}_{\text{avg}}$$ \hspace{1cm} (3)

3. Linear Time-Varying State-Feedback Law

This section illustrates the design procedure of the optimal feedback gain, $K(t)$, which is the main contribution of this manuscript. For that, the linear state-feedback control law is defined as

$$u(t) = K(t)q(t)$$ \hspace{1cm} (4)

subject to (1), where $K(t) \neq 0$, $t \in I$, is the feedback gain for the vehicle model (2). Assuming the fact that the convex set

$$\mathcal{Q}$$

subject to (1), where $\mathcal{Q} \neq 0$, $t \in I$, is the feedback gain for the vehicle velocities, can eventually solve the problem (3). Hence, the problem (7) can be solved if there exists an optimal feedback gain $K^*(t)$, for $t \in I$.

Theorem 1. (Existence of optimal feedback gain $K^*(t)$). Given the feedback system (5), there exists an optimal feedback gain $K^*(t) \in \mathcal{K}_{ad}$ that solves the regulator problem (7).

Proof. Using the well-known Alaoglu’s theorem, $\mathcal{K}_{ad} \subset \mathcal{K} \subset \mathbb{R}^{2 \times 4}$ is a (weak star) w^* compact set and it suffices to prove that $K \mapsto J(K)$ is sequentially weak star continuous. Let $\{K^i, i \in N\} \subset \mathcal{K}_{ad}$ be a sequence and suppose $K^i \rightharpoonup K^*$. As \mathcal{K}_{ad} is w^* closed, we have $K^* \in \mathcal{K}_{ad}$, see [36].Suppressing the variable t for clarity, let $\{q^i, i \in N\}$ and q^* denote the solutions of the system (5) corresponding to $\{K^i, i \in N\}$ and K^*, respectively. Hence, the corresponding state equation becomes $q^i = f(q^i, K^i)$ and $q^* = f(q^*, K^*)$, with initial conditions $q^i(0) = q^*(0) = q_0$. The solutions of these two state-space models can be described by $q^i(t) = q_0 + \int_0^t f(q^i(\tau), K^i(\tau))d\tau$, and $q^*(t) = q_0 + \int_0^t f(q^*(\tau), K^*(\tau))d\tau$. Subtracting one from another, we get

$$q^i(t) - q^*(t) = \int_0^t \{f(q^i(\tau), K^i(\tau)) - f(q^*(\tau), K^*(\tau))\} d\tau$$ \hspace{1cm} (8)

Note that $F(q^i)$, $i \in N$ and $F(q^*)$ are uniformly bounded functions and satisfy Lipschitz condition $\|F(q^i) - F(q^*)\| \leq L_c \|q^i - q^*\|$, where L_c is the Lipschitz constant. Taking the Euclidean norm in both sides of expression (8) and using the triangle inequality yield

$$\|q^i(t) - q^*(t)\| \leq v^i(t) + \int_0^t \beta(\tau)\|q^i(\tau) - q^*(\tau)\|d\tau,$$

where $v^i(t) = \int_0^t \|F(q^i)(K^i - K^*)q^i\| d\tau$.

Thus, it follows from Gronwall inequality that $\|q^i(t) - q^*(t)\| \leq v^i(t) + \int_0^t \exp\{\int_0^\tau \beta(\tau_1)d\tau_1\} \beta(\tau)v^i(\tau)d\tau$. Clearly, $v^i(t) \to 0$, for $t \in I$, $i \in N$, as $K^i \rightharpoonup K^*$. Hence, $q^i \rightharpoonup q^*$. As both $\ell(t, \cdot)$ and $\Phi(t, \cdot)$ are continuous on $[0, T]$, we have $\ell(t, q^i(t)) \to \ell(t, q^*(t))$ for almost all $t \in I$ and $\Phi(t, q^i(t)) \to \Phi(t, q^*(t))$ as $i \to \infty$. Thus it follows from the expression (6) that $\lim_{i \to \infty} J(K^i) = J(K^*)$ proving weak star continuity of J on \mathcal{K}_{ad}. As \mathcal{K}_{ad} weak star compact, J attains its minimum on \mathcal{K}_{ad}. \hfill \Box

Theorem 1 guarantees that there exists an optimal feedback gain K^* for the system (5). To solve for the optimal trajectory that minimizes the objective functional (6), we need to derive the necessary conditions of optimality. These necessary conditions are most readily found if the integrand of the cost functional (6) is recast in terms of

\[
\min_{K \in \mathcal{K}_{ad}} J(K) \quad \text{(7)}
\]

which yields $q(t) \to q^i(t)$ as $J(K) \to 0$, for $t \in I$. It is important to point out that, solving the problem (7) will eventually solve the problem (3). Hence, the problem (7)
that the feedback gain
dynamic systems given in our previous publication [38] and
necessary conditions for the feedback law of semi-linear
zero,
the optimal feedback gain
Hamiltonian \(H \) obtained if there exists an optimal multiplier
following necessary conditions:
vehicle’s feedback system (5) defined over the time hori-
\(\psi(t) \) is a vector of Lagrange multipliers whose elements are the costates of the system [2]. We
now derive the necessary conditions of optimality feedback model (5).

Theorem 2. (Necessary conditions of optimality) As the optimal feedback gain \(K_*(t), t \in I \), exists, the optimal trajectory \(q^*(t), t \in I \) for the feedback model (5) can be obtained if there exists an optimal multiplier \(\psi^*(t) \in C(I, \mathbb{R}^4) \) such that the triple \(\{q^*, \psi^*, K^*\} \) satisfies the following necessary conditions:

\[
\mathcal{H}(t, q^*(t), \psi^*(t), K^*(t)) \geq \mathcal{H}(t, q^*(t), \psi^*(t), K(t)),
K(t) \in \mathcal{K}, t \in I \tag{10a}
\]

\[
\dot{q}^* = \frac{\partial \mathcal{H}}{\partial q}[t, q^*(t), \psi^*(t), K^*(t)], \quad q^*(0) = q_0, t \in I \tag{10b}
\]

\[
\dot{\psi}^* = -\frac{\partial \mathcal{H}}{\partial q}[t, q^*(t), \psi^*(t), K^*(t)], \quad \psi^*(t_f) = \frac{\partial \Phi}{\partial q}[t_f, q(t_f)] \tag{10c}
\]

The detailed proof of this Theorem is similar to the necessary conditions for the feedback law of semi-linear dynamic systems given in our previous publication [38] and is omitted here for conciseness purpose. Theorem 2 states that the feedback gain \(K^* \in \mathcal{K}_{ad} \) provides the necessary conditions for the vehicle to determine optimal control inputs for its actuator. To solve for \(K^* \), we express the gradient of the Hamiltonian defined in (9) and set it to zero,

\[
\mathcal{H}_K \equiv \frac{\partial \mathcal{H}}{\partial K} = \mathbf{F}^T[q(t, K)]\psi(t)q^T(t, K) = 0 \tag{11}
\]

Note that the expression in (11) is dependent on the gain \(K \) through the solution of the state-feedback model (5) for \(q(t, K) \). Hence, the problem boils down to finding \(K(t), t \in I \), such that the vehicle’s actual trajectory \(q(t), t \in I \), and the costate trajectory from (10c) satisfy (11). The optimal feedback gain \(K^* \) can be determined by satisfying the Hamiltonian inequality (10a). In other words, the choice of \(K \) is to be adaptively tuned to minimize the vehicle’s tracking error.

Corollary 1. (Adapting the gain \(K \).) Consider the vehicle’s feedback system (5) defined over the time horizon \(I \). Adapting the gain \(K \) according to the following offline update rule

\[
K_{\text{new}} = K_{\text{old}} - \epsilon \mathcal{H}_K, \quad \text{for } 0 < \epsilon < 1 \tag{12}
\]

satisfies the Hamiltonian inequality (10a) and, hence, guarantees the convergence of the vehicle’s trajectory to follow its reference trajectory or stabilize on a fixed configuration.

See [38] for its detailed proof. In the following, we numerically solve for the gain \(K \) such that (11) is satisfied, aggregating the components described earlier. Let \(K_i = K_i(t), t \in I \), be the gain at the \(i \)th iteration of the optimization procedure. Find the optimal gain \(K^* \) by repeating steps 1–5 until the stopping criterion in step 5 is met.

Step 1. Integrate the vehicle’s feedback system (5) with \(K = K_i(t), t \in I \).

Step 2. Solve costate equation (10c) backward for \(\psi_i \).

Step 3. Define the Hamiltonian \(\mathcal{H}(q_i, \psi_i, K_i) \) as in (9).

Step 4. Compute the cost function \(J(K_i) \) using (6), the gradients of the Hamiltonian \(\mathcal{H}_K \) using (11), and its corresponding integrated norm \(\int_0^T \|\mathcal{H}_K\|^2 dt \).

Step 5. If \(J(K_i) \leq \delta_1 \) or \(\int_0^T \|\mathcal{H}_K\|^2 dt \leq \delta_2 \), for pre-defined small positive tolerance constants \(\delta_1 \) and \(\delta_2 \), then \(K_i \) is regarded close enough to its optimal value, and so the algorithm is halted. Otherwise, use the update rule \(K_{i+1}(t_k) = K_i(t_k) - \epsilon \mathcal{H}_K(t_k) + \lambda \Delta K_i(t_k) \) and \(\Delta K_i(t_k) = K_i(t_k) - K_{i-1}(t_k) \) to adjust the piecewise-constant feedback gain for \(t \in [t_k, t_{k+1}], k = 0, \ldots, N - 1, N \) is the number of subintervals in \(I, \epsilon \) is the step size, and \(\lambda \) is the momentum constant (for faster convergence).

4. Simulation Results

We now illustrate the performance of the proposed optimal feedback controller using a car-like vehicle with the body length of \(l = 30 \) cm. The vehicle’s velocities are constrained as \(|v| \leq v_{\text{max}} = 1.5 \text{ m/s} \) and \(|\omega| \leq \omega_{\text{max}} = 1 \text{ rad/s} \). The performance metrics adopted in the current work are the vehicle’s state tracking error \(q_e(t) = (x_e(t), y_e(t), \theta_e(t), \phi_e(t))^T = q(t) - q^*(t) \) and the average cumulative position error, \(\mathcal{E}_{\text{avg}} \), over the time interval of \(I = [0, 60] \) s, which allow us to make quantitative assessment of the proposed control method. The elements of the feedback gain matrix \(K \) are initially set to \(10^{-4} \). The sampling time period is set to 0.6 s. The optimal feedback gain \(K^*(t) \) is computed using the optimization procedure described in Section 3. The controller’s performance in solving the vehicle’s stabilization and tracking problems is demonstrated in the following sections.

4.1 Parallel Parking

As stated in the literature, stabilizing a vehicle on a fixed configuration is more difficult than tracking a reference trajectory. In this section, we present the vehicle’s parallel parking ability which is actually the stabilization of the vehicle to a fixed configuration.

The stabilization performance of the proposed control scheme is evaluated by choosing the weight matrices as \(P(t_f) = \text{diag}(1, 1, 1, 1) \) and \(Q(t) = \text{diag}(0.02, 0.02, 0.02, 0.02) \), \(\forall t \in I \). Hence, the stabilization at the a fixed configuration is regarded 50 times as importance as guiding the vehicle towards that configuration. The vehicle’s goal is to stabilize at the position of \((x, y) = (1.8, 1.8) \text{ m} \) with the orientation of \(0^\circ \) and the desired orientation of the front wheels is \(45^\circ \). The initial position and orientation of the vehicle are \((1, 0, 0) \text{ m} \).
Figure 2. Controller’s performance for parallel parking and trajectory (eight-shaped) tracking problems: (a) & (b) vehicle’s trajectory (hollow arrow: initial state, solid arrow: final state); (c) & (d) error; and (e) & (f) optimal time-varying feedback gain, $K^*(t)$.

The vehicle’s parking performance is summarized in Fig. 2. Figure 2(a) shows the vehicle’s ability to stabilize on its target, where the hollow and solid arrows represent the initial and final poses, respectively. The error, distance between the vehicle and its target, shown in Fig. 2(c) represents how fast the vehicle is approaching towards the target with a final error of ≈ 0, as expected. The optimal feedback gain, $K^*(t)$, $t \in [0, 60]$ s, corresponding to the optimal trajectory is shown in Fig. 2(e). Initially, the values of all eight components of the gain matrix K^* are high due to the initial perturbation of the vehicle from the desired target point. As expected, the gain $K^*(t)$ converges to zero as the vehicle reached to target point. It is important to articulate the fact that the values of $K^*(t)$ at time $t \in [0, 60]$ s are admissible in the sense that the left and right wheel velocities in the feedback control $u^*(t) = K^*(t)q^*(t)$ satisfy the velocity constraints of the vehicle.
4.2 Trajectory Tracking

Let us consider that the vehicle has to follow a feasible and smooth desired trajectory given in terms of cartesian positions \((x^d(t), y^d(t))\), for \(t \in I \equiv [0, 60]s\). For that, the vehicle’s desired state trajectory must be generated from \((x^d(t), y^d(t))\). The desired Cartesian trajectory \((x^d(t), y^d(t))\) is feasible when it satisfies the vehicle’s desired (reference) model from (2), i.e.,

\[
\dot{q}^d(t) = f(q^d(t), u^d(t))
\]

where \(q^d(t) = [x^d(t), y^d(t), \theta^d(t), \phi^d(t)]^T\) is the desired state of the vehicle with the suitable initial condition \(x^d(0) = [x^d(0), y^d(0), \theta^d(0), \phi^d(0)]^T\). We solve for the vehicle’s linear velocity \(\nu_f(t)\) (not the front wheel velocity, \(\nu_f^d(t)\)) and steering velocity \(\omega_f(t)\) by following the procedure illustrated in [41]. Note that the vehicle’s body angle \(\theta^d(t) \in (-\pi, \pi]\) and its front wheels’ orientation \(\phi^d(t) \in (-\pi/2, \pi/2)\).

Substituting \(\nu_f^d(t) = \nu_f^d(t) \cos \phi(t)\) and using \(\omega_f^d(t)\) yield the desired state trajectory of the vehicle, which is the solution of the desired model (13).

For the vehicle to track the desired state trajectory, the weight matrices of the cost function (6) are chosen as \(P(t_f) = diag(1, 1, 2, 2)\) and \(Q(t) = diag(1, 1, 2, 2), \forall t \in I\). Hence, trajectory tracking is given equal importance as just reaching the final destination.

We choose \(x^d(t) = 1.5 \sin(\pi t/30), y^d(t) = 1.5 \sin(\pi t/15), \forall t \in [0, 60] s\), as the reference eight-shaped trajectory and the vehicle’s initial state is \((0.5, 0, 0, 0.45)\). The tracking performance is revealed in Fig. 2. Figure 2(b) reveals the vehicle’s tracking capability in such a complex trajectory, where tracking error (see Fig. 2(d)) still remain approximately zero until end of the trajectory. The bounded control velocities are generated from the optimal feedback gain revealed in Fig. 2(f).

Given the satisfactory numerical results for solving tracking and stabilization problems of vehicles with Ackermann steering, the proposed feedback law can be qualitatively compared with the model predictive control law presented in [27] in that the proposed feedback law does not rely on the complexity of the reference trajectory of the vehicle as opposed to [27]. In most cases, see [26], [27], for example, the reference trajectory has to be satisfied by the robot’s kinematic model which is not the case considered in the present work.

5. Conclusion

In this paper, a novel linear time-varying optimal state-feedback control law for solving two main control problems (stabilization and tracking) of a nonholonomic vehicle with Ackermann geometry is proposed. The proposed technique relies on optimizing the linear feedback gain taking into account the vehicle’s actuator constraints. The stabilization and tracking problems are successfully solved with sufficiently small error, as expected. It is interesting to note that the vehicle model is not required to be linearized to follow a certain reference trajectory in finite time. It is worth pointing out that the theoretical contribution for the proposed control law presented herein opens the door for solving these problems of a general class of nonlinear affine systems.

Acknowledgement

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through the research group project No. RGP-VPP-049.

References

[39] Biographies

Suarez Miah has a Bachelor’s degree from Khulna University of Engineering & Technology (KUET), Bangladesh, and both Master’s and Ph.D. degrees from the University of Ottawa, Canada. He is currently an assistant professor at the Department of Electrical and Computer Engineering (ECE) at Bradley University. He is also an adjunct professor of the School of Electrical Engineering and Computer Science at the University of Ottawa. Before joining the ECE department at Bradley, he spent more than two years conducting research on multi-agent systems and control for Defence Research and Development Canada (DRDC)’s Centre for Operational Research and Analysis (CORA), Ottawa, Ontario, Canada. His research lies in the broad area of cyber-physical systems. In particular, he conducts research on mobile robot navigation, control systems, mechatronics, multi-agents systems and control. He is currently a research member of the Cyber-Physical Systems laboratory at Bradley and the Machine Intelligence, Robotics, and Mechatronics (MIrAAM) laboratory at the University of Ottawa. He is an author/co-author of more than 40 technical papers, which are published in highly reputed journals and conferences. He has been an active member of the Institute of Electrical and Electronics Engineers (IEEE) since 2007, and has been serving as a reviewer of many prestigious journals and conference proceedings.

Peter A. Farkas was born in Brasov, Romania, in 1983. He received the B.A.Sc. degree in computer engineering, and the M.Eng. degree in electrical and computer engineering from the University of Ottawa in 2006 and 2014, respectively. He joined Larus Technologies as an Embedded Systems Engineer in 2007. Since 2010, he has been with BlackBerry Ltd, where he is currently a senior...
systems architect. His current research interests include robotics, multi-agent systems, and artificial intelligence.

Wail Gueaieb (MIEEE’04, SMIEEE’07) received the bachelor’s and master’s degrees in Computer Engineering and Information Science from Bilkent University, Turkey, in 1995 and 1997, respectively, and the Ph.D. degree in Systems Design Engineering from the University of Waterloo, Canada, in 2001. He is currently a professor in the School of Electrical Engineering and Computer Science (EECS) at the University of Ottawa, Canada. He is also the founder and director of the Machine Intelligence, Robotics, and Mechatronics (MIRaM) Laboratory at EECS. His research interests span the fields of intelligent mechatronics, robotics, and computational intelligence. He is the author/co-author of more than 100 patents and articles in highly reputed journals and conferences. He is currently an associate editor of the International Journal of Robotics and Automation. He has served as an associate editor, guest editor, and program (co-)chair for several international journals and conferences, such as the IEEE/ASME Transactions on Mechatronics and the IEEE Conference on Decision and Control. He has been with the industry from 2001 to 2004, where he contributed in the design and implementation of a new generation of smart automotive safety systems.

Hicham Chaoui received the B.Sc. degree in electrical engineering from the Institut supérieur du Génie Appliqué (IGA), Casablanca, Morocco, in 1999, the M.A.Sc. degree in electrical engineering, the M.Sc. degree in computer science (with honors), the graduate degree in project management, and the Ph.D. degree in electrical engineering (with honors) all from the University of Quebec, Canada, in 2002, 2004, 2007, and 2011, respectively. His career has spanned both academia and industry in the field of intelligent control and renewable energies. Prior to his academic career, he held various engineering and management positions including vice-president of Innovation and Technology Development. He is currently an assistant professor at Tennessee Technological University, TN, USA and an adjunct professor at the Université du Québec à Trois-Rivières, QC, Canada. His research interests include adaptive and nonlinear control theory, intelligent control, robotics, mechatronics, electric motor drives, and energy storage and management. He co-authored more than 60 journal and conference publications. He is a senior member of IEEE and serves regularly as a reviewer for many prestigious scientific editors. He was a recipient of the Best Thesis Award (health, natural science, and engineering) and the Governor General of Canada Gold Medal Award.

Mohammad Anwar Hossain is an associate professor in the Department of Software Engineering, College of Computer and Information Sciences (CCIS) at King Saud University (KSU), Riyadh. He completed his M.Sc. degree in Computer Science and Ph.D. degree in Electrical and Computer Engineering from the University of Ottawa, Canada, where he was associated with Multimedia Computing Research Laboratories. At KSU, he received IBM faculty award. His current research interests include multimedia cloud, multimedia surveillance and privacy, internet of things, smart cities and ambient intelligence. He has authored/co-authored over 90 research articles as journals, conference papers, and book chapters. He has co-organized more than ten IEEE/ACM workshops including IEEE ICME AAMS-PS 2011-13, IEEE ICME AMUSE 2014, ACM MM EMASC-2014, IEEE ISM CMASCITY2015. He is also involved as TPC in several other conferences. He served as a guest editor of Springer Multimedia Tools and Applications journal. Also, currently he serves as a guest editor of Springer Multimedia Systems Journal and International Journal of Distributed Sensor Networks. He has secured several grants for research and innovation totaling more than $5 million. He is a member of IEEE, ACM and ACM SIGMM. He is also the co-editor of SIG MM Records.