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ABSTRACT

Computational graph analysis metrics can be used to
make quantitative comparisons between biological and reg-
ulatory networks obtained from real specimens with simu-
lated synthetic networks that have well parameterized prop-
erties such as a scale-free structure. We compute the be-
tweenness centrality metric for five public domain protein-
protein network data sets and compare them with synthe-
sized NK networks. We employ a node-culling procedure
to progressively remove the highest connected nodes in
these networks and assess the wholistic system changes as
revealed by the resulting Floyd all-pairs distance and the
number of component clusters in the networks as they fail
and break up. We discuss the potential for this method
in assigning characteristic signatures or categories to net-
works of this sort as well as for identifying network com-
ponents that are most vulnerable to biological attack.
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1 Introduction

The concept of a centrality metric [26] for character-
izing the nodes in a network is not new and various cen-
trality measures [27] have been devised over the last forty
years. The betweenness centrality metric [46] is relatively
recent and being of particular interest is discussed in Sec-
tion 3 below. This metric helps identify the most central
or important node in a given network - and therefore the
node whose removal or failure will have the greatest con-
sequences for the system as a whole.

Recent work has explored this metric [44] for applica-
tions including social [22] networks, communications net-
works [68], power systems [37,38], and water distribution
networks [39]. It does not appear to have been uptaken
widely in the biological and medical communities yet how-
ever.

Biologists and medical engineers are finding the use
of computational graph analysis algorithms of growing im-
portance for the classification and understanding of bio-
networks [11]. A number of biological problems [6,7,23]
can be posed in terms of graph and combinatorics [4].
While some of these can be analyzed using closed form
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mathematics, many interesting biological data sets are
available in the form of simple or weighted [5,69] graph or
network structures and are too large and complex to be an-
alyzed except using numerical or enumerative graph meth-
ods [20]. Some examples include genetic transcription net-
works and other experimentally obtained bio-net data such
as: interaction networks [9]; conformation space networks
for protein folding [59, 60, 78]; peptide folding applica-
tions [10, 65]; and metabolic graphs [61,77].

Small-sized networks can be studied using visual ren-
dering techniques [35,74] and an intuitive understanding is
often easily grasped. Larger networks are too hard to un-
derstand from a simple rendering and may not in fact be
easily rendered in a simple space at all. There is usually
far too much complexity to be able to interpret the highly
connected core of nodes visually. In such cases it is impor-
tant to have a battery of graph metrics [36] and to use them
to categorize and identify the major properties of an un-
known network by comparing its metrics signature to those
of simpler or known network instances. A divide and con-
quer approach is also useful, whereby a large and complex
network might be broken down into sub-graphs or compo-
nents [43] with a well-defined or known set of properties.

A number of network analysis tools and techniques
for determining properties from such large scale bio-
networks have emerged in recent years and have been re-
ported in the literature [51, 57] with ongoing efforts to
formulate new approaches [50] still appearing. Proper-
ties such as numbers and connectivity distributions of ver-
tices; arcs; input and output ratios; and maxima and min-
ima of such connectivities are easily computed. An im-
portant finding from such analyses is that typically not all
vertices in a graph are equally important [41] and some are
often many times more important. Identifying these hubs
or pivot nodes without recourse to visualization can aid the
application analysis considerably.

More sophisticated properties such as the number of
disparate clusters of nodes in graphs that are not fully con-
nected, or the statistical pathway properties [18,25] within
fully connected clusters both involve more computationally
demanding calculations but are still quite feasible even for
large networks. Other attractive quantities such as the num-
ber of loops or circuits are impractical to compute for all
but small networks. The methods are usually formulated in
systematic and explicit searches and enumerative counting.



Recent work has considered the community structure
of a network [12,29, 56]. Communities in networks [40]
are closely related to the notions of motif patterns [21] and
cliques [62] and are closely-coupled nodes that can be de-
tected even in networks which are completely connected.
Localized properties such as the clustering coefficient can
be computed for a cluster or a whole graph using explicit
techniques.

Some work has considered the spectral properties of
networks [33] where the quantities of interest are formed
using matrices. Linear algebra and other manipulations on
matrix derivations from a network’s adjacency matrix are
used to compute approximate groupings into communities
or modules [52] of highly interconnected vertices. Such
methods [34] are limited by the size of matrix that can
practically be manipulated. In most cases there are prac-
tical memory limitations imposed that are more likely to be
more severe than compute time limits using typical present
generation processing systems.

For graphs and networks of a particular sort of struc-
ture including “small-world” networks, scale-free proper-
ties are often well characterized by metrics like the clus-
tering coefficient [55]. The clustering coefficient [63] and
various alternatives to it [1] have found use in the study of
biological networks such as metabolic networks [53]. The
Newman clustering coefficient is effectively the fraction of
transitive triples or triangles present in the network and is
considered in Section 5.

A number of authors have reported recent progress
in analyzing the complexity [13] and robustness [15] of
biological network data. A particular area of interest is
in establishing good network analyses and properties to
aid in the matching [79], querying [24, 45] and data min-
ing [64] of biological network data-sets. Other important
work has focused on discovery-specific linkages within bio
nets [66] through techniques such as data slicing [76] and
also on categorizing the typically occurring network archi-
tectures [72].

In a recent work Hawick explored distances, compo-
nent labelling and other static metrics that could be applied
to protein-protein networks [73]. In this present paper we
further examine some public domain biological network
data sets and use the betweenness centrality metric to com-
pare them with synthetic NK networks.

Although metrics such as the betweenness centrality
metrics are well known and have been applied to rank indi-
vidual nodes in biological data sets, to our knowledge none
of the existing network analysis packages [31, 54, 67] sup-
port the systemic node-culling procedure we describe here.
Our main contribution in this present work is to show how
this technique can reveal the fragility and systemic break
points in a biological network.

Our article is structured as follows: In Section 2 we
summarize some of the protein-protein interaction network
data we have used in this study along with references to the
sources. We summarize the graph network terminology we
employ in Section 3 and describe the betweenness central-
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ity metric. We give a overview of the NK synthetic network
model that has been often posited as a potential theoreti-
cal model for biological networks such as regulatory nets
in Section 4. In Section 5 we present some quantitative
results showing static metrics, but also the dynamic net-
work break-up behaviour as nodes are attacked or “culled”
in rank order. We present a discussion of this approach in
Section 6 and offer some conclusions and areas for further
study in Section 7.

2 Protein-Protein Networks

As described in [36] there are a number of public do-
main protein-protein network data sets available. We con-
sider five of these as labelled and summarized in Table 1.
These data sets are available from the Web site of the Euro-
pean COSIN project [14] amongst others. We chose these
particular five as they range in size and features and make
interesting comparisons with the synthetic NK networks we
describe in Section 4.

Data Set V| |A|l | |C| | Form | Cite
elegans 375 437 | 20 gss [70]
yeast 4,142 8,099 | 99 gss ibid.
heliobacter 732 1,465 16 gss ibid.
ecoli 270 716 | 20 | gijw | [9]

beta3s reduced | 1,287 | 33,813 1| gijw | [59]

Table 1. The numbers of vertices, arcs and (enumerated)
clusters for the five publicly available biological data sets.

The elegans, yeast and heliobacter protein-protein in-
teraction data-sets are due to the DIP Project [70] and
they represent networks for Caenorhabditis elegans; Sac-
charomyces Cerevisiae(yeast); and Heliobacter Pylori re-
spectively. They consist of string-labelled node pairs and
are encoded as a single string-string graph format (gss).
The ecoli protein-protein interaction data-set was report-
edly confirmed by reciprocal tagging and purification or
by repeat analysis and this set is due to Butland and co-
workers [9]. It consists of 270 vertices and is split into 20
separate component clusters. It is encoded as un-weighted
integer vertex index pairs (gijw format).

The Beta3s protein folding data-set represents the
conformation space of a 20 residue anti-parallel beta-sheet
peptide that has been sampled using molecular dynamics
simulations and is due to Rao, Caflisch and co-workers
[59]. The full data set is the largest one considered in
this present work and has 132, 168 vertices. It consists of
a weighted set of integer vertex index pairs with the tra-
jectory transitions contributing to the weights. A reduced
version of this set with only 1,287 vertices is also avail-
able on the COSIN web site, and this set was apparently
constructed for conformations that were visited at least 20
times. This reduced network data-set has a single fully con-
nected component and can have its betweenness centrality
more practically computed.



Table 1 shows the range of sizes of network, different
ratios of arcs to vertices and also the number of discon-
nected clusters each network spits into when appropriately
enumerated.

3 Betweenness Centrality Metric

We develop graph terminology for describing the be-
tweenness centrality metric. Consider a Graph G with a set
V vertices or nodes, of which there are /Ny, nodes and a
set of E edges of which there are N individual connect-
ing power lines. In this present paper we do not weight
the arcs, and imagine them all part of a single integrated
high voltage trunk system connecting exit points to down-
transformers and the consumer network structure.

Centrality metrics attempt to rank the nodes in some
order specifying which is the most connected or important
to the network as a whole. A simple centrality measure is
simply the in or out degree of a node. That is, the number
of other nodes that it connects to or from. Another central-
ity metric is the so-called “betweenness”. This is defined in
terms of the node through which the most number of path-
ways connecting any two other nodes pass. Computing the
betweenness involves computing the shortest path distance
between each pair of nodes (s,t);s € V,t € V. We then
compute the fraction of the shortest paths that pass through
each vertex v and sum this fraction over all possible pairs
of vertices (s, t). This can be written as:
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where o, ; is the total number of shortest paths from s to ¢
and o +(v) is the number that pass through v.

We can optionally normalize by dividing by number
of node pairs not including v. This factor is (n—1)((n —2)
although for the work we report here with a fixed and
known number of nodes in the graph it is instructive to plot
the betweenness centrality un-normalized so we can see an
actual number of pathways in the context of the whole net-
work, and other distances and metrics. Computing shortest
path data for a network is a long standing problem and al-
though there are several algorithms available [19,30,58] in
practice the choice (for networks that are not too large) is
dominated by the ease of integration with the data struc-
tures and the other software apparatus used.

Computationally, the complexity of obtaining the
shortest paths is O(N7) using the Floyd-Warshall algo-
rithm [25]. There are other and newer algorithms such as
Brandes’ algorithm, which takes O(Ny Ng) [8]. In this
present work the calculations were done repeatedly as net-
works were progressively allowed to fail and it was suffi-
cient and easiest to use the Floyd-Warshall algorithm

4 NK-Network Models

Random Boolean Network (RBN) models are effec-
tively a generalization of the 1-dimensional Cellular Au-
tomata model [71] and are often simulated on a network
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substrate such as an NK graph. Kauffman’s NK-Model
[48] of an N-node network with K-inputs to a boolean func-
tion residing on each node has found an important role in
the study of complex network properties. RBNs have found
important applications in biological gene regulatory net-
works [49] but also in more diverse areas such as quantum
gravity through their relationship with ¢3-networks [2, 3].
RBNs have many interesting properties [28] and have been
amenable to various analyses [47] including mean-field
theory. They continue to be an important and interesting
tool in studying biological and artificial life problems.

A key property of RBNs is the now well established
existence of a frozen phase and a chaotic phase [16,17] and
the critical phase transition lies at the integer value of con-
nectivity K, = m = 2 for unbiased networks with
a mean boolean function output value of p = 0.5. It has
therefore been of most interest to study RBNs at or around
this critical value. In this present work however we see that
biological data generally indicates that protein-protein nets
have considerably higher average connectivities.

The Random Boolean Network or graph G is ex-
pressed as a four-tuple G = (V,E,F,z) and has N =
|[V| = |F| = |z| nodes or vertices, and N, = |E| di-
rected edges or arcs, which express the K; inputs for node
1. The Kauffman NK-Network is constructed with fixed
K =1,2,3,.. and a boolean function f; of K inputs is as-
signed to each node. All the nodes of the network carry
boolean variables x; which may be initialized randomly
and which are updated (usually, but not necessarily) syn-
chronously so that:

In generating network instances of the NK-network
model we assign the K; inputs for node ¢ randomly and
with uniform probability across all nodes. Even for a large
network there is still a non-zero probability of assigning a
node as one of its own inputs. In the case of K; > 1 there
is also a possibility of assigning a node j as an input of
1 more than once. These self-edges or multiple edges can
have a subtle effect on the behaviour of the NK-network
model [42].

Work has been carried out on a number of different
update mechanisms for boolean networks including asyn-
chronous algorithms [32]. In this paper we focus solely
on the static structure of NK graphs and we use graph ro-
bustness methods and betweenness centrality measures to
investigate the role that connectivity makes in comparisons
with protein-protein networks. As well as making some
calculations of the static network properties we employ a
procedure developed by Hawick [37,38] for analyzing net-
work robustness. We compute the node with the highest
betweenness centrality and remove it to see how the whole
network properties are changed. This process can be re-
peated to study the systemic failure or dynamic change
pattern of the network as individual components are “at-
tacked” and removed.
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Figure 2. Fitted slope to the computed intercepts of the
straight-line segments of the plots of max betweenness vs
K.

S Selected Results

We present a range of graph analyses made on the five
protein interaction biological data sets but also on a range
of synthetic NK networks. It is first useful to consider the
betweenness centrality metric in our synthetic networks.
We can adjust both the size /V and the connectivity K of
our synthetic data. We expect a crucial variation with con-
nectivity, but intuitively we might hope that once we use a
big enough network, then it will be a good representation
and with average properties similar to other large networks
and so we choose N = 2048 for the work reported here.

Figure 1 shows maximum values of the betweenness
plotted against connectivity K, for various network sizes N.
The plots are on a log-log scale and indicate that at small
connectivity K the maximum betweenness follows straight
lines on the plot. This implies that the maximum between-
ness Bmax follows a power law and from the systemic
slopes we see these themselves do change with network
size N but only very weakly.

Figure 2 shows the fitted intercepts plotted vs network
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Figure 3. Population distribution of different betweenness
values in synthetic NK networks, for N=2048.

size N on a log-log scale. The weak dependence from a
least-squares fitted “slope of the slopes” appears to confirm
we are justified in studying a fixed network size of N =
2048 for this study.

In addition to the maximum betweenness found in a
particular network we can use the whole distribution as
a potential signature e spectrum to characterize individ-
ual networks. We perform this both for the synthetic NK
graphs as well as for the biological data sets under consid-
eration.

Figure 3 shows the population distribution of different
betweenness values present in the synthetic NK networks,
for different connectivities K but for a fixed network size
N. They have been normalized (by their total sum) and are
plotted on a log-log scale. The curves all follow a charac-
teristic shape with a relatively rapid cut-off on important
nodes with a high betweenness. Two curves stand out as
having additional features - that for K’ = 2 which as de-
scribed in Section 4 is known to be the critical K value for
these networks, but also for K = 323. These plots are
averaged over twenty individually randomly generated net-
work instances, and from the standard deviation of which
distribution the error bars are generated. We hypothesize
that K = 32 is closely related to the connectivity limits
possible for a network size of N/2 = 1024. This is of pe-
ripheral interest for our present work but is worth further
systemic study in the context of NK and other scale free
network generation models.

Figure 4 shows the population distribution of differ-
ent betweenness values present in the protein-protein net-
works. They have also been normalized and are plotted
on a log-log scale. These are each of their own charac-
teristic size but they appear to exhibit the same character-
istic tail off of connectivity but with differing degrees of
sharpness. The yeast and beta graphs are large but appear
to have smaller connectivities compared to the other three
which compare more closely with the synthetically gener-
ated high-K graphs. The yeast data set also exhibits a kink
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Figure 4. Population distribution of different betweenness
values in protein-protein networks.
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that is qualitatively similar to that of the N —2048, K = 32
set.

The node culling procedure described in [37] can be
applied to these data sets as well. The original network has
its nodes ranked by betweenness centrality and the most
crucial node is removed. The process can be repeated an
arbitrary number of times. In the plots shown, forty of the
nodes are removed in turn. Useful properties to examine
during this process are the number of connected clusters of
nodes — which obviously rises as the network is attacked —
and the Floyd all-pairs distance which can have more com-
plex behaviour as nodes are attacked.

Figure 5 shows how the number of clusters present in
the biological data sets increases as nodes are culled in or-
der of maximum betweenness centrality. We see the num-
ber of disconnected or separate clusters grows smoothly for
the beta protein-protein network suggesting it is a scale free
structured system very like the NK sets. The NK data are
not shown but they superpose almost exactly on top of the
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Figure 6. Floyd distance computed as nodes are culled in

betweenness rank from the biological data sets.

beta set curve shown, The other sets exhibit a qualitatively
similar growth of component clusters but with less mono-
tonic smoothness indicating a greater degree of inhomo-
geneity in cluster sizes present. An analysis of the modular
communities present in these data sets would reveal more
details on this inhomogeneity.

Figure 6 shows how the simple hop-based Floyd all-
pairs distance metric increases in the biological data sets
as nodes are culled in order of maximum betweenness cen-
trality. This is computed for the largest single component
present — it is infinite for disconnected nodes. Compar-
ing this to the number of clusters we see the elegans data
shows some pathological and counter intuitive changes.
The Floyd distance appears to fall but this is due to the
changes in the cluster size distribution and emphasizes that
this data set degrades in a complex manner and not just
with a simple breaking off of small clusters. The ecoli data
set also shown some discontinuities but is mostly mono-
tonically rising like the remaining three sets. The smooth
behaviour of these is also closely followed by the synthetic
NK data sets.

Figure 7 shows how the Floyd distance metric (again
in terms of simple graph hops) increases as nodes are culled
from the synthetic networks. The curves are almost flat in
the number of culled nodes. This indicates a slow and grad-
ual break up of the networks as highly central nodes are re-
moved. Note that the smooth synthetic structure has given
rise to a much more gradual break up. This will likely be
reflected in the simpler community structure of these syn-
thetic systems with no definite modules dominating break-
up and pathological discontinuities.

6 Discussion

It is useful to try to summarize our systems by plot-
ting the Newman clustering coefficient [63] for both the
synthetic as well as the biological data sets.

Figure 8 shows a log-log scale plot of the synthetic
NK data with the biological sets placed at a guessed effec-
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Figure 8. Mean Newman clustering coefficient for biologi-
cal data sets and also synthetic NK networks.

tive K-connectivity to fit the trend. This analysis seems
consistent with the average number of arcs and so forth
present in the different data sets as a ratio with the num-
ber of nodes.

There are other properties such as the number of
monomers, leaf-nodes, and associated ratios that can also
be used to categorize networks during the culling process.
The size of the largest cluster present is also shown to be
useful generally in power and water diustribution networks
[39], but the number of clusters and all-pairs distance seem
to be most useful in this biological network context.

7 Conclusion

We have demonstrated the utility of the betweenness
centrality metric from graph analysis to compare static net-
work properties of both synthetic NK networks of different
connectivities and also biological protein-protein interac-
tion data sets obtained from real biological systems.

We have seen that the manner in which the networks
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fail under attack or removal of the most highly ranked
nodes gives a dynamical signature that allows us to com-
pare and categorize biological sample networks. We see for
example that the beta network system is most likely a near
scale-free system and with a high degree of connectivity.
Other systems seem to have lower general connectivities.

We have seen how known properties of a synthetic
network structure such as NK graphs can help assess our
technique and its value in studying real world networks
from measured data such as the bionets discussed. This
approach is potentially useful in discussing network prop-
erties and in particular inhomogeneities and more complex
community structures that exhibit more sophisticated be-
haviours than smoothly grown synthetic networks. The
systemic culling technique allows a categorization of bio
networks according to their fragility and progressive break-
up properties.

Our focus was on a static analysis of NK systems here
since that is the only means of comparison we can make
with the five biological data sets available to us. However
one could also look at graph structures in the trajectories
of the associated RBN dynamic system and measure for
example the graph structure of the time loops or attractors
in these models.

We have primarily used the betweenness metric to
compare signatures of biological protein-protein networks
with NK networks, but there is scope to apply these meth-
ods more systematically to a broader parameter range of
NK class networks themselves to assess their robustness
[75] against node attack or failure.

In summary, this approach has potential for catego-
rizing highly complex networks of constrained finite size
such as protein-protein or regulatory networks, against the
known and more easily studied behaviours of artificially
generated networks such as NK systems, which of them-
selves still exhibit scale-free and other complex systems
properties.
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