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Abstract

To find a smooth, safe global path that avoids the local dynamic

obstacle, this article proposes a method of integrating the improved

A* algorithm and artificial potential field method, namely, MAAPF.

Firstly, the multi-objective functions are introduced into the heuristic

function of the A* algorithm to reduce the redundant points in the

global path. When the robot detects dynamic obstacles, it searches

the global path node as the local goal according to the robot’s

position and detecting range, meanwhile combining the dynamic

obstacle trajectory predicted by the autoregressive model and static

obstacles in the detection range to construct the local map, then

through the artificial potential field method that is improved by

adding the goal guidance factor and gravitational distance threshold

to complete local dynamic obstacle avoidance, avoid the goal is

unattainable and locally optimal. The simulation demonstrates that

improving the A* algorithm within a 3D environment and the

artificial potential field algorithm has better results than other

algorithms. Besides, the MAAPF can obtain a safe optimal path in

circumstances with dynamic obstacles.
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1. Introduction

Path planning takes into account factors, such as path
length, energy consumption, and time elapsed to plan an
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optimal route from the starting position to the ending
position, which as a key technology in robotics has
been proverbially used in multifarious fields, such as the
intelligent transportation systems, logistics systems, and
search and rescue in disasters so on [1]–[3]. The general
steps of path planning contain environment modelling
and path search. Environment modelling is the basis of
path search [4], and its main method includes the visible
graph method [5], topology method, and grid method
[6]. The path search can be separated into local route
search and global route search according to the different
environments in which the robot is located, global path
planning relies on already known information to get
the optimal path, it usually includes traditional algo-
rithms, intelligent algorithms, graph-based approaches,
and local path planning such as article potential filed
and dynamic window method keeps away from the
moving obstacle depending on the information acquired by
sensors [7]–[11].

A* algorithm as a type of the global path planning
algorithm is the most direct and impactful shortest
pathfinding way [12]–[14]. A* algorithm explores the
waypoint to the destination point by a heuristic function,
reduces search blindness, and improves search efficiency
by narrowing the scope of search [15]. There are countless
studies on the path planning of the A* algorithm, [16]
introduced the quadratic A* algorithm to reduce the
length of the route and employed the dynamic tangential
point method to adjust the concave and convex points
to smooth the path. Reference [17] showed that the
jump point search A* algorithm can find the route
quickly yet there are still turning points resulting in a
longer path compared with other modifications of the
A* algorithm. Reference [18] considered introducing the
weight information of the pavement into the heuristic
formula, deleting the redundant points by turning points
extraction strategy, and finally, finding the optimal
path with small road roughness. Reference [19] used
triangulation to deal with obstacles and generate Voronoi
nodes as path points, then the priority of pathfinding and
usual route nodes improved the A* algorithm.
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Artificial potential field as a pathfinding way is
proposed by Khatib, its essence is a virtual force method.
Reference [20] analysed the gravitational and repulsive
potential field models, and pointed out that the artificial
potential field method is easy to cause target unreachable
problems and local extremums in a complex environment.
Literature [21] avoids local optimisation by improving
the repulsive potential field function and combined with
directional escape. Owing to better obstacle avoidance,
[22] and [23] took the artificial potential field to build
heuristics factors in the ant colony algorithm, and [24] takes
artificial potential field into account in the state transition
rule, in the literature [25] obstacle avoidance is achieved by
using the repulsion generated by the position and velocity
of the obstacle.

However, when the robot is in a complex environment,
the A* algorithm will occur the collision with the locomotor
obstacles and generate more tutor points, and the artificial
potential field will find an incomplete path owing to lacking
awareness of global environmental information or fall into
local optimal. Therefore, this paper base on mobile robot
in land fuses global algorithms with local algorithms,
constructs the multi-objective function to improve the
A* algorithm, and rebuilds the potential function to mend
the artificial potential field method, it contributes to the
mobile robot completing obstacles avoidance behaviour
and finds an optimal route in dynamic circumstances.

2. Improvements to the Algorithm

2.1 Environmental Model Description

Environment modelling is the basis for path planning, to
effectively depict the environmental information and the
state of the robot during the search path, this paper treats
the robot as a point of motion on the plane and establishes
a 3D environment map based on the grid method,
the data stored in the grid reflects the environment of
information.

The two-dimensional plane is partitioned into a grid
of the same size R, with N rows and M columns, and
the size of the robot determines the scale of the grid R.
Assuming (xi, yi) is the coordinate of the ith grid, and
the mapping relationship between the grid number and the
coordinates is:xi = R[mod(i,M)−R/2]

yi = R[N +R/2− ceil(i/N)]
(1)

To further build the 3D map, using the coordinates
x and y to represent the rows and columns to form a 2D
matrix, the z represents the height value and is used to
reveal the inhomogeneity of the 2D plane. The terrain C is
depicted as:

Cterrain =


z11 z12 ... z1N

z21 z22 ... z2N

... ... ... ...

zM1 zM2 ... zMN

 (2)

Figure 1. The map with the obstacles.

Meanwhile, regarding the obstacles in the environment
as a series of cylinders with radius r, and the coordinate
of the centre of each cylinder indicates the position of
obstacle, and the final 3D environment map with the above
obstacles is formed in Fig. 1.

2.2 The Improved A* Algorithm

The traditional A* algorithm can effectively handle most
of the global planning problems, but there are a lot of
redundant points in the optimisation results, which cause
the zigzag path appears, and there is no doubt that this
is not only detrimental to the action of the robot but also
affects the effect of the algorithm. Reference [26] proposed a
PSO-DV algorithm based on multi-objective optimisation,
under its influence, based on the principle of traditional
algorithms, the improvement of the A* algorithm also
considers multi-objective optimisation. This method not
only keeps the shortest path of the original algorithm but
also completes the smoothing of the path, the specific
improvements are as follows.

Firstly, when planning the robot’s path, the robot
needs to be abiding by the conditions described below:
I. The robot points to the target position in the process

of deciding the next location from the current location.
And the robot can detect obstacle in a very short time
in its detection range and can quickly deal with the
environment information obtained.

II. Each path point is independent, find the final path
by extending N nodes, and deriving the overall cost
function by calculating the cost function of each
segment. All distances are expressed by Euclidean
distances, for example, the distance ρ(P, Pt) between
node P (x, y, z) and node Pt(xt, yt, zt) is presented as:

ρ(P, Pt) =
√

(x− xt)2 + (y − yt)2 + (z − zt)2 (3)

Under the above assumptions and conditions, we
convert the robot path planning into a problem solved by
a multi-objective optimisation method, as follows:
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(i) Path length function:
Considering under the precondition that the starting and
ending points are, respectively, (xs, ys, zs), (xt, yt, zt), the
robot chooses the next point (xi, yi, zi) as far away from the
obstacles as possible at short notice, and when the route
path is extended to the N th node which means that the
completed path is found, so the common objective function
about the path length is determined as:

F1 =

√
(x1 − xs)2 + (y1 − ys)2 + (z1 − zs)2

+

N−1∑
i=2

√
(xi − xi−1)

2
+ (yi − yi−1)

2
+ (zi − zi−1)

2

+

√
(xt − xN−1)

2
+ (yt − yN−1)

2
+ (zt − zN−1)

2
(4)

(ii) Obstacle avoidance function:
This function reveals the robot’s ability to avoid obstacles,
and assuming Pi is the ith nodes coordinate, using the
nearest distance Dmin(Pi) between Pi and the obstacles as
well as the range of the obstacle to construct the obstacle
avoidance function, it is defined as follows:

f2,i =

k
(

1
Dmin(Pi)

− 1
r

)
if Dmin (Pi) ≤ r

0 otherwise
i ∈ (1, 2, ..., N)(5)

F2 =

N∑
i=1

f2,i (6)

where r is the influence range of obstacle, k as a
positive parameter to affect the value of obstacle avoidance
function, k = 1

2 in this article, the smaller the F2, the safer
the path found.

(iii) Smoothness function
Take the smoothness of the route as the third constraint
function to obtain a smooth path. The robot generates
a new path point during each extension, every two
consecutive path points are connected to the target point
to form two continuous line segments and convert the angle
between the two segments into radians to indicate the
smoothness of the route. The smoothing objective function
is obtained as (7) and (8).

f3,i = arccos



(xi − xt) (xi−1 − xt) + (yi − yt)

(yi−1 − yt) + (zi − zt) (zi−1 − zt)√
(xt − xi)

2 + (yt − yi)
2 + (zt − zi)

2√
(xt − xi−1)2 + (yt − yi−1)2 + (zt − zi−1)2


/π

(7)

F3 = arccos



(xs − xt) (x1 − xt) + (ys − yt)

(y1 − yt) + (zs − zt) (z1 − zt)√
(xt − xs)2 + (yt − ys)2 + (zt − zs)2√
(xt − x1)2 + (yt − y1)2 + (zt − z1)2


/π

+

N∑
i=2

f3,i (8)

(iv) Steering angle function
In the process of the robot from one node to another, a
large steering angle will increase the energy consumption
and the time to find a path owing to the robot’s
physical maneuverability characteristics. Therefore, the
three consecutive path nodes are connected in turn to
form two consecutive line segments, and the steering
angle θ is represented by the difference between the
angle formed by these two lines segments and the
horizontal plane, and the final steering angle constraint
function which is constructed by combining the pre-
set maximum steering angle constraint and can be
demonstrated as:

θi = arctan

(
yi − yi−1
xi − xi−1

)
−arctan

(
yi−1 − yi−2
xi−1 − xi−2

)
i ∈ (2, 3, ..., N) (9)

αi = |θi| −
π

2
(10)

f4,i =

1 if αi ≥ 0

0 else
(11)

F4 =


S +

N∑
i=1

f4,i if
N∑
i=1

f4,i > 0

0 if
N∑
i=1

f4,i = 0

(12)

where θi(i ∈ 2, 3, ..., N) is the turning angle of the ith node,
θ1 = 0, and (x0, y0, z0) represents the starting point in (9).
Applying S (S = 4 in this article) to penalise the route
where the node is located when the turning angle is greater
than the 90◦, the larger the cost function value, the more
tortuous the final full path.

(v) Slope angle function
The angle between the line of two consecutive nodes and
the horizontal plane is served as a slop angle cost function
to express the diversification of the path in the vertical
orientation, and the slope angle is restricted to the specified
range to ensure that the mobile robot as stable as possible
in movement and the flatness of path in the vertical plane.
So the slope angle constraint function is expressed as

f5,i =

0 if βmin ≤ βi ≤ βmax

1 else
(13)

F5 =

S +
∑N
i=1 f5,i if

∑N
i=1 f5,i > 0

0 if
∑N
i=1 f5,i = 0

(14)

where [βmin, βmax] is the range of the slope angle, βmax = π
4 ,

βmin = −π4 in this article, βi is the ith slope angle, which
is formed by the (i− 1)th and ith waypoints with:

tanβi =
(zi − zi−1)√

(xi − xi−1)
2

+ (yi − yi−1)
2

(15)

To achieve path planning, in the courses of searching
for a path by the A* algorithm, adopting the above five
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objective functions to form the multi-objective function
shown in (16), it is constantly considered whether the new
adding node satisfies the constraints of the multi-objective
function, and uses the above criteria to judge whether a
short path does not collide with obstacles and has good
smoothness can be obtained.

F = F1 + F2 + F3 + F4 + F5 (16)

2.3 Local Path Planning

2.3.1 Estimated Obstacles Track

In an environment with dynamic obstacles, since the
trajectory of the dynamic obstacle is unknown, when the
dynamic obstacle is found within the observation radius of
the robot, using the autoregressive (AR) prediction method
to predict the trajectories of the dynamic obstacle over
a period of time, and treating these trajectories as static
obstacles in the environment, taking the current position
as the origin and the detection range as the radius to search
the global path node as the local goal node, then calling the
local map and using the improved artificial potential field
method to correct the trajectory of the robot to reduce the
collision between dynamic obstacles during the movement.

2.3.2 Simulation Comparison of Trajectory Prediction
Algorithms

The AR model is chosen as the predict method of the
position column of the obstacle since it is simple and fast.
For the sake of testing the precision of this method, in a
two-dimensional mesh environment with a side length of
1 m and a size of 25 × 25, the Kalman filter method,
particle filter method, and AR model are used to estimate
the path of the same moving obstacle, that is, the data
of the first 16 trajectory points are known, and the
data of the last 9 trajectory points are predicted. Actual
trajectories of moving obstacles are represented by black
solid lines, the predicted tracks are shown by dashed lines,
the specific simulation experiments are demonstrated in
Fig. 2, and the means square error and calculation time of
each predicted path are shown in Table 1 and Fig. 3.

Compared with the other two algorithms, it can be
clearly seen that the AR model has the advantages of
a simple method, fast algorithm speed, can ensure the
accuracy of calculation, and can react and avoid obstacles
in a short time when facing dynamic obstacles.

2.3.3 The Improved Artificial Potential Field Algorithm

In most cases, the robot does not have access to all obstacle
information under a partially unknown environment, which
in turn leads to the global search algorithm cannot
complete the path search independently. So, consider local
search within a certain range during the robot encounter
a partly unknown environment, and decide how to search
in virtue of having amended artificial potential field [27] to
ensure the route safely.

When dynamic obstacles are observed within the
robot’s detection range, the artificial potential field method

Figure 2. Dynamic obstacle trajectory prediction.

Table 1
Mean Square Error and Calculation Time of Each

Predicted Path

Autoregressive
Model

Kalman
Filter

Particle
Filter

Mean square error 0.1490 0.4455 0.1658

Calculating time 0.2054 0.2150 0.6263

Figure 3. Comparison of relevant data for each prediction
path.

is activated to dodge the moving obstacles, and gravity is
too large which will lead to a collision with obstacles in the
process of barrier avoidance and result in local optimality,
so the following improvements are made to gravity in
traditional methods:

Uatt =

 1
2ερ

2 (P, Pt) if ρ (P, Pt) ≤ l

lερ (P, Pt)− 1
2εl

2 otherwise
(17)

Fatt =

ε (Pt − P ) if ρ (P, Pt) ≤ l
lε(Pt−P )
ρ(P,Pt)

otherwise
(18)

where l is a threshold that defines the value of the robot
moving away from the obstacle.
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Figure 4. The flowchart of the algorithm.

Similarly, for guarding against the generation of
two phenomena: target unreachable and local optimum,
gravitational guidance factors are added to the repulsive
potential field to generate a force from the robot pointing
to the destination at the same time as the repulsive force,
which in turn can properly drag the robot away from the
obstacle, in addition, gravitational force and repulsive force
can simultaneously become zero when the robot reaches
the goal node, avoiding the problem of the target being
unreachable, repulsion and repulsive potential field are
improved as follows:

Urep =

 1
2η
(

1
Dmin(Pi)

− 1
r

)2
ρ2t if Dmin(Pi) ≤ r

0 otherwise
(19)

Frep =



η
(

1
Dmin(Pi)

− 1
r

)
ρ2t∇Dmin(Pi)

D2
min(Pi)

+η
(

1
Dmin(Pi)

− 1
r

)2
ρt

if Dmin(Pi) ≤ r

0 otherwise

(20)

2.3.4 Local Map Segmentation

When the robot’s radar detects a dynamic obstacle, it
regards its current location as the origin point and uses
the radar detection radius as the basis for finding the
local target point, that is, looking for the local path
point in the set of global route point from where the
robot is currently located. The predicted dynamic obstacle
trajectory position is used as a static obstacle, and
the original static obstacle in the current local map is
considered, after completing the local pathfinding with the
modified artificial potential field method, go back to the
global roadway point and repeat the above operations until
a holonomic path is found.

2.4 The Fusion of Algorithms

The integration of global and local route search is realised
by utilising the modified A* algorithm and artificial
potential field method, namely, MAAPF, to avoid that the
global path planning has poor dynamic barrier avoidance
ability and local path planning easily falls into local
optimal. In the beginning, the improved A* algorithm
is implemented to search the route node to be added.
Assuming that the mobile obstacle is found within the
observation radius of the mobile robot at the nth point,
the artificial potential field method is used to calculate
the route in the local map. In fact, use a local map and
only consider static obstacles within this range in the
path planning of dynamic obstacle avoidance, rather than
use the global map, which is more conducive to saving
calculation time and improving the efficiency of finding
paths by reducing the number of times the global map was
called. The flowchart for the fusion algorithm is displayed
in Fig. 4.

3. The Simulation in the Dynamic and Static
Environments

The simulation of the robot path planning is conducted
through MATLAB on a Windows10 operating system.
Before the experiment starts, the robot is regarded as a
point with the preestablished initial movement direction
in a 3D environment map with 92 obstacles distributed
as shown in Fig. 5, the start position and endpoint are
also predefined and marked in the environment with
red and blue circles, respectively. The simulation of the
improved A* algorithm with other algorithms is shown
in Fig. 5(a) and (b), at the same time, as exhibited
in Fig. 5(c), the availability of the improved algorithm
is also confirmed by gradually increasing the constraint
function.

In a 21 × 21 map, selects initial point is (1, 1) and
the goal location is (20, 20), through multiple iteration
calculations, the comparison of path length, convergence
time, and other data are revealed in Table 2, a line
chart of Fig. 6 is also plotted using the data in Table 2.
After contrast, it is found that the overall performance
of improving A* algorithm outperforms other algorithms.
In the actual robot operation process, fewer path points
and path steering points can reduce the excessive energy
consumption caused by robot steering, and have high use
value, which indicates that the improved A* algorithm has
strong practicality.

To further validate the feasibility of the improved
artificial potential field method, in the 21 × 21 map
with (0, 0) as the starting point and (20, 20) as the
endpoint marked by a red triangle, selecting the four
dynamic obstacles with different directions and velocities
and a radius of 0.4, at the same time regards robot as
a particle during the movement process, comparing the
dynamic obstacle avoidance effect of the conventional,
the improved artificial potential field method and the
artificial potential filed with escape force, and the overall
path diagram of the specific policy is shown in Fig. 7,
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Figure 5. The path comparative simulation: (a) the 3D path comparative simulation; (b) the comparison of the 2D projective
path; and (c) the comparison of variants of other A* algorithms.

Table 2
Relevant Data for Algorithm Comparison in Fig. 5

Path Length Convergence Time Turning Points of the Path Number of
Route Points

Traditional A* algorithm 31.5916 32.5880 14 25

Improved A* algorithm 32.3184 31.8315 11 25

Particle swarm algorithm 31.2189 120.5407 3 28

Ant colony algorithm 30.6274 103.5875 11 25

Guideline based A* algorithm 32.4163 37.4007 14 28

Key point based A* algorithm 31.5921 37.1364 11 28

A* with obstacle avoidance 39.1461 36.7962 13 31

Smooth A* with obstacle avoidance 34.6594 37.1484 14 29

Smooth A* with obstacle avoidance,
steering angle

32.3186 36.2608 12 25
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Figure 6. Comparison chart of related data for the algorithm.

Figure 7. The simulation of avoiding the moving obstacles: (a) the improved artificial potential field; (b) the conventional
artificial potential field; and (c) the artificial potential field with escape force.

the initial speed and position of the obstacles are
in Table 3.

In the simulation of dynamic obstacle avoidance, the
dotted line represents the track of the green moving
obstacle, and the solid blue, black, and purple lines,
respectively, represent the trajectory of the robot by
applying the modified, conventional artificial potential
field, and artificial potential field method with escape force.

Figure 8 further illustrates the effect of the improved
artificial potential field to elude the moving obstacle, which

can be clearly observed that the modified artificial potential
field can better keep away from each moving obstacle, while
the conventional artificial potential field is able to avoid
the first dynamic obstacle, but collides with the subsequent
moving obstacles. Although the method in Fig. 8(c) can
avoid the second and third dynamic obstacles, it will
also collide with the first and last obstacles. From the
above simulation diagrams, it can be clearly seen that the
improved artificial potential field method has good obstacle
avoidance ability.
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Figure 8. Obstacle avoidance comparing of different dynamic obstacles: (a) the conventional artificial potential field method;
(b) the improved artificial potential field method; and (c) the artificial potential field method with escape force.
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Figure 9. Dynamic obstacle avoidance simulation.

Figure 10. Local pathfinding simulation of moving obstacles based on the hybrid algorithm in this paper. (a)–(d) local map
when encountering dynamic obstacles.
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Figure 11. Local pathfinding simulation of moving obstacles based on the hybrid A* and artificial potential field method with
escape force: (a)–(c) local map when encountering dynamic obstacles.

Figure 12. Simulation of a single algorithm in a complex environment: (a) and (b) the improved A* algorithm; and (c) the
improved artificial potential field method.
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Table 3
Initial Position and Speed of Dynamic Obstacles in

Figs. 7 and 8

Initial Position Speed Direction Speed (m/s)

(8,14)
−−−−−−→
(20.8, 14) (0.064, 0)

(3,1)
−−−−→
(14, 15) (0.4990, 0.1255)

(5,10)
−−−−−→
(13,−2) (0.04, −0.06)

(14,8)
−−−−→
(2, 14) (−0.06, 0.03)

Table 4
Initial Position and Speed of Dynamic Obstacles in

Figs. 9–12

Initial Position Speed Direction Speed (m/s)

(3,4)
−−−→
(3, 8) (0.0284, 0.2558)

(17,8)
−−−−−−−−→
(12.2, 17.6) (−0.2, 0.4)

To confirm the availability of the fusion algorithm in
the circumstance with dynamic obstacles, also with (1, 1)
as the starting point and (20, 20) as the endpoint for
simulation experiments in the 21 × 21 map, on the basis of
the original 97 static obstacles, the static obstacles located
at (15, 11) are set as dynamic obstacles with (17, 8) as
the starting point for round-trip movement, and another
dynamic makes a curved movement, the corresponding
position and speed are exhibited in Table 4, at the same
time, the hybrid algorithm based on A* and artificial
potential field with escape force is applied to this scenario
and compared with the hybrid algorithm in this paper, the
effects of global and local path planning are revealed in
Figs. 9 and 10.

In Fig. 9, the smaller green circle is a dynamic
obstacle, the opposite static obstacle is black circle and
the black dotted line is its trajectory because the two
dynamic obstacles move back and forth, so the trajectory
of the second dynamic obstacle is finally presented as a
solid black line. Figs. 10 and 11 are the simulation results
of local path planning when the robot comes across three
dynamic obstacles, the red triangle represents the local
target point, and it can be noticed from the above figures
that the hybrid algorithm can effectively avoid obstacles in
circumstances with dynamic obstacles and find the global
path, and another path planned by the hybrid A* algorithm
and the artificial potential field method with escape force
is not feasible.

In Fig. 12, the simulation figures with label (a) and
label (b) are the path planning results of the improved
A* algorithm in a complex environment, and the solid
red line is the final planned path, but in the process of
planning, its path collides with the first moving obstacle.
The simulation figure with label (c) is the simulation
result of the improved artificial potential field method
in a complex environment, through the solid blue line
of the lake is the final path, and the planned path is
not feasible. Compared to Fig. 9(a), it can be clearly

seen that the complete path can be planned in the case
of mixing the two algorithms and avoiding the obstacle
successfully.

4. Conclusions

For purpose of further realizing the pathfinding in the
circumstance with dynamic obstacles, improve the poor
obstacle avoidance ability of global route search and
the characteristics of local route search that is easy
to fall into local optimisation, the MAAPF which is a
fusion scheme of A* algorithm and artificial potential
field method is provided. The trajectory planning of a
single robot in circumstances with dynamic obstacles can
obtain the optimal smooth path from a predetermined
starting point to an ending point and effectively avoid
dynamic obstacles in the environment. Introducing the
multi-objective function in the A* algorithm to avoid
producing too many redundant points, meanwhile, for
averting the matter of local optimality and unattainable
target in the local map, ameliorating the artificial potential
field method by setting the gravitational threshold and
gravitational guidance factor. Through simulation, the
improved A* technology can find the path faster than
other algorithms (such as PSO, ant colony algorithm,
and other variants of A* algorithm), there are fewer
turning points than the traditional A* algorithm, and the
improved artificial potential field method has better ability
to avoid obstacles in the area where there are dynamic
obstacles.
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[27] B. Kovács, G. Szayer, F. Tajti, M. Burdelis, and P. Korondi,
A novel potential field method for path planning of mobile
robots by adapting animal motion attributes, Robotics and
Autonomous Systems, 82, 2016, 24–34.

Biographies

Chongyang Lv received his B.S.
degree in mathematics from North-
east Forestry University in 2010,
his M.Sc. degree and Ph.D. degree
from Harbin Engineering Univer-
sity in 2013 and 2018. At present,
he is a lecturer at the School of
Science, Harbin University of Sci-
ence and Technology. His research
interest includes multi-agent path
planning, collaborative control and
navigation of multiagent (robot),

and artificial intelligence algorithms.

Xuejie Fan received her B.S. degree
in Mathematics and Applied
Mathematics from Binzhou Uni-
versity. She is currently pursuing
an M.Sc. degree in Mathematics at
Harbin University of Science and
Technology. Her research interest
includes robot path planning and
artificial intelligence calculation
method.

Mingxiao Sun received his B.E. and
Ph.D. degrees from the College of
Automation, Harbin Engineering
University respectively in 2010 and
2018. He is currently an Associate
Professor in School of Automation,
Harbin University of Science and
Technology. His research interest
includes group system path plan-
ning and ship motion control.

105


	A  FUSION  ALGORITHM  FOR  PATH PLANNING  OF  MOBILE  ROBOTS IN  ENVIRONMENTS  WITH DYNAMIC  OBSTACLES
	Chongyang Lv,,, Xuejie Fan,,, and Mingxiao Sun=3
	1 Introduction
	2 Improvements to the Algorithm
	2.1  Environmental Model Description
	2.2  The Improved A* Algorithm
	2.3  Local Path Planning
	2.3.1 Estimated Obstacles Track
	2.3.2 Simulation Comparison of Trajectory Prediction Algorithms
	2.3.3 The Improved Artificial Potential Field Algorithm
	2.3.4 Local Map Segmentation

	2.4  The Fusion of Algorithms

	3 The Simulation in the Dynamic and Static Environments
	4 Conclusions



