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Abstract

In this paper, a control algorithm based on the Lyapunov stability

theory and neural network adaptive scheme is proposed to efficiently

regulate the position, attitude, and altitude of a quadrotor through

a nonlinear dynamic model. Based on the Lyapunov stability theory,

the controller allows the system to continue its task correctly

even if one or two rotors of the quadrotor stop working and

this is achieved without losing stability. Also, in the presence

of parametric uncertainties, the coefficients of the controller are

adaptively tuned by the neural network method. The obtained results

demonstrated the proper performance of the control algorithm

based on different operating conditions and scenarios. In fact, the

obtained results demonstrated that the proposed controller exhibits

desirable transient behaviour and performance stability. Therefore,

for operational purposes where the stability and continuation of

the quadrotor mission in case of rotor failure is very important,

using the controller proposed in this research is very efficient. The

proposed control algorithm is easy to implement, compatible with

existing quadrotors, and does not significantly affect the overall

energy consumption.
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1. Introduction

Extensive research has been done about unmanned aerial
vehicles (UAVs) such as quadrotors; many companies have
invested in this field and a significant number of academic
and industrial projects have been reported, from which we
can state those focussing on the control of the stability
and position of UAVs during their operation using different
control approaches, such as sliding modeling technique [1],
backstepping and/or adaptive methods [2], robust PID
[3], [4], and linear quadratic Gaussian (LQG) control [5].
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On the other hand, fault-tolerant control (FTC) issues
have been arisen from defects in the UAV sensors, motors,
or other segments [6]. FTC systems can be classified into
passive and active [7]. Whenever there is a fault in a passive
FTC system, the control structure does not change, and
the control system is resistant to the faults [8], whereas,
if there is a fault in an active FTC system, the control
system will be reset [8]. In FTC systems, different methods
have been explored to design the controllers in the case
of rotor failure. The sliding method has been used in [9]
and [10] to control the operating conditions in the case
of rotor failure and disturbance, while authors in [11] and
[12] used model predictive control to control the system.
Robust adaptive control has been used in [13] to track
the altitude and control the quadrotor attitude. In [14], a
nonlinear discrete adaptive algorithm and a PID algorithm
[15], have been used, respectively, within inner and outer
loops to control the path tracking. Optimisation methods
have been used in [16] to minimise the forces applied by the
rotors in the case of their failure. Smart control methods,
such as reinforcement learning [17], have been used for
FTC. Fuzzy logic algorithm has been used in [18] to control
a multirotor UAV; furthermore, it has been shown that
the control algorithm has an adequate performance even in
the case of two rotors failure. Usually, whenever the rotor
fails, the controller is not capable of controlling one of the
variables of roll, pitch, and yaw; needless to point that,
yaw often ignored, i.e., roll, pitch, and altitude are the
only controlled variables. In fact, controlling the roll and
pitch is of utmost importance since any small change in roll
and pitch angles will cause the system to lose its stability;
preventing the quadrotor from hitting the ground is the
reason for altitude control [8]. However, lack of yaw control
in the case of rotor failure will cause the quadrotor not to
be capable of completing its task, that is to say, just to be
able to have emergency landing. As an example, whenever
the yaw value is not controlled in the case of rotor failure in
quadrotors with cameras, the issue will lead to inability of
imaging; on this basis, the yaw value should be controlled
if the quadrotor aims to continue its task in spite of router
failure.

In this research, a control algorithm based on the
Lyapunov stability theory is designed to efficiently control
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the attitude, position, and altitude of the quadrotor. The
designed controller is divided into four sub-controllers:
attitude controller, altitude controller, position controller,
and controller for calculating Euler angles. The proposed
algorithm is a combination of the Lyapunov stability theory
and the neural network adaptive scheme, in which the
coefficients of each controller are adaptively tuned by the
neural network method. The control algorithm is robust
to the failure of the actuators, and if one or two rotors
fail, the quadrotor can perform its tasks using only the
remaining rotors. In fact, in case of failure of the rotors,
the controller by adjusting the rotor angular velocity and
the desired Euler angles causes the system to track the
desired path without losing stability. This research includes
mathematical modelling of the quadrotor and statement
of the problem, design details of the controllers, including
altitude, attitude, status, and the controller for calculating
the desired Euler angles, and at the end, the results of the
simulation, comparison, and conclusion are presented.

2. Mathematical Model

Quadrotor is an UAV with six degrees of freedom. It
accounts for two pairs of rotors which rotate in opposite
directions. The dynamical model of a given quadrotor UAV
is presented in Fig. 1, where the state vector [x, y, z]
denotes the position of the center of the gravity of the
quadrotor and the vector [ẋ, ẏ, ż] denotes its linear velocity
in the body frame; the three Euler angles [ϕ, θ, ψ] state for
the roll, the pitch, and the yaw, respectively, while [ϕ̇, θ̇, ψ̇]
refers to its angle velocity in the body frame. The dynamic
equations are set by defining the ground frame and the
body frame [8]:

ẍ = (cos (∅) cos (ψ) sin (θ) + sin (∅) sin (ψ))

lkf
m

(
ω2
1 + ω2

2 + ω2
1 + ω2

4

)
(1)

ÿ = (cos (ψ) sin (∅)− cos (∅) sin (ψ) sin (θ))
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(
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2 + ω2
1 + ω2

4

)
(2)

z̈ = g − cos (∅) sin (θ)
lkf
m

(
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1 + ω2

2 + ω2
1 + ω2

4

)
(3)
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(IB,xx − IB,zz)

IB,xx
θ̇ψ̇ − Kd,xxϕ̇
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lkf
IB,xx

(
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)
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(
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ϕ̇Ip,zz
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ψ̈ = −Kd,zzψ̇
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ϕ̇2 + θ̇2 + ψ̇2

+
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IB,zz
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1 − ω2

2 + ω2
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Here, m denotes the total mass, g the acceleration of
gravity, and l the distance from the center of each rotor
to the center of gravity. ω1, ω2, ω3 , and ω4 stand for the

Figure 1. Definition of quadrotor body frame and rotor
indices.

angular speed of the propeller. From that, the control
inputs u1, u2, u3, and u4 can be calculated by the following
matrix system

u1

u2

u3

u4

 =


1 1 1 1

−l 0 l 0

0 l 0 −l

1 −1 1 −1




ω2
1

ω2
2

ω2
3

ω2
1

 (7)

For the quadrotor dynamic model given by (1)–(6), the
following assumptions are made:

• The quadrotor structure is symmetric and rigid.
• The origin of the body frame and the center of gravity

are the same.
• The axes of the body frame are coincident with the

quadrotor inertia axes.

3. Statement of the Problem

Equations (1)–(6) have been reformatted as below for
designing the controller.

ẍ = (cos (∅) cos (ψ) sin (θ) + sin (∅) sin (ψ))u1 (8)

ÿ = (cos (ψ) sin (∅)− cos (∅) sin (ψ) sin (θ))u1 (9)

z̈ = g − cos (∅) sin (θ)u1 (10)

ϕ̈ = a1θ̇ψ̇ − c1ϕ̇+ u2 − b1 θ̇ ωr (11)

θ̈ = −a1ϕ̇ψ̇ − c1θ̇ + u3 + b1 ϕ̇ωr (12)

ψ̈ = −c2ψ̇ + u4 (13)

with

u1 =
lkf
m

(
ω2
1 + ω2

2 + ω2
1 + ω2

4

)
, u2 =

lkf
IB,xx

(
ω2
2 − ω2

4

)
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lkf
IB,xx

(
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3
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,

u4 =
kτ
IB,zz

(
ω2
1 − ω2

2 + ω2
3 − ω2

4

)
(14)

a1 =
(IB,xx − IB,zz)

IB,xx
, b1 =

Ip,zz
IB,xx

(15)

c1 =
Kd,xx

IB,xx

√
ϕ̇2 + θ̇2 + ψ̇2,
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Figure 2. Control system design.

c2 =
Kd,zz

IB,zz

√
ϕ̇2 + θ̇2 + ψ̇2 (16)

ωr = (ω1 + ω2 + ω3 + ω4) (17)[
x, ẋ, y, ẏ, z, ż, ϕ, ϕ̇, θ, θ̇, ψ, ϕ̇

]
is the system state vector

and [u1, u2, u3, u4] the vector of the system control inputs.

4. Controller Design

Figure 2 shows the structure of the quadrotor controller
which includes attitude, altitude, and position controllers.
The purpose of the controller design is to track the desired
trajectories [xd, yd, zd, ϕd, θd, ψd].

4.1 Altitude Control

Lyapunov function will be set as follows to control the
quadrotor altitude and the convergence of the system to
its desired value.

Vh =
1

2

[
(z − zd)2 + ż2

]
(18)

Its first derivative can be expressed as

V̇h = ż (z − zd) + z̈ż (19)

Substituting (10) into (19) gives

V̇h = ż (z − zd) + żg − cos (ϕ) cos (θ) żu1 (20)

u1 should be then selected as follows to keep the Lyapunov
stability conditions

u1 =
(z − zd) + g + kz ż

cos (ϕ) cos (θ)
(21)

By maintaining the condition kz > 0, the stability
condition of the Lyapunov function is satisfied:

V̇h = −kz ż2 < 0 (22)

The parameter kz can be determined based on the
requirements for the steady-state tracking precision and the
convergence speed of control. A neural network is deployed
to adjust the coefficient kz with the adaptation law
derived from the conventional backpropagation algorithm.
The neural network is trained by the specialised learning
architecture [19] to minimise the performance error E:

E =
1

2
(zd − z)2 (23)

Based on the gradient descent method [20], we have
the following adaptation equation:

kz = kz0 − εz
∫ t

0

∂E

∂kz
dt (24)

where εz is the learning rate which determines the
convergence speed of neural network and kz0 the initial
value of kz. Using the chain rule:

∂E

∂kz
=
∂E

∂z

∂z

∂u1

∂u1
∂kz

= −(zd − z)
∂z

∂u1

(
ż

cos (ϕ) cos (θ)

)
(25)

Assuming ∂z
∂u1

= sign( ∇z∇u1
) [19], we have:

kz = kz0 + εz

∫ t

0

(zd − z) sign
(
∇z
∇u1

)
(

ż

cos (ϕ) cos (θ)

)
dt (26)

where ∇ is called the ascending or backward differences
operator, such as ∇ hk = hk − hk−1.

4.2 Attitude Control

Lyapunov function is based on the roll, pitch, and
yaw variables to control the quadrotor attitude and the
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convergence of the roll, pitch, and yaw to their desired
values.

VA =
1

2

[
(ϕ− ϕd)2 + ϕ̇2 + (θ − θd)2 + θ̇2

+(ψ − ψd)2 + ψ̇2
]

(27)

The derivative of the Lyapunov function is obtained as
follows:

V̇A = ϕ̇(ϕ− ϕd) + ϕ̇ϕ̈+ θ̇(θ − θd) + θ̇θ̈

+ψ̇(ψ − ψd) + ψ̇ψ̈ (28)

Substituting (11)–(13) into (28) leads to

V̇A = ϕ̇ (ϕ− ϕd)− c1ϕ̇2 + ϕ̇ u2 + θ̇(θ − θd)− c1θ̇2

+θ̇ u3 + ψ̇(ψ − ψd)− c2ψ̇2 + ψ̇ u3 (29)

u2, u3, and u4 should be selected as follows for keeping
the Lyapunov stability conditions.

u2 = − (ϕ− ϕd)− kϕϕ̇
u3 = − (θ − θd)− kθ θ̇
u4 = − (ψ − ψd)− kψψ̇ (30)

By maintaining the condition kϕ > 0, kθ > 0 and
kψ > 0, the stability condition of the Lyapunov function is
satisfied:

V̇A = −c1ϕ̇2 − kϕϕ̇2 − c1θ̇2 − kθ θ̇2 − c2ψ̇2 − kψψ̇2 < 0 (31)

Correspondingly, the neural network is used to adjust
the positive coefficients kϕ, kθ, and kψ, and the following
results are obtained:

kϕ = kϕ0 + εϕ

∫ t

0

(ϕd − ϕ) sign

(
∇ϕ
∇u2

)
(−ϕ̇) dt (32)

kθ = kθ0 + εθ

∫ t

0

(θd − θ) sign

(
∇θ
∇u3

)(
−θ̇
)

dt (33)

kψ = kψ0 + εψ

∫ t

0

(ψd − ψ) sign

(
∇ψ
∇u4

)(
−ψ̇
)

dt (34)

where εϕ, εθ, and εψ are the respective learning rates that
determine the convergence speed of neural network, and
kϕ0, kθ0, and kψ0 are the initial values of kϕ, kθ, and kψ,
respectively.

4.3 Position Control

Lyapunov function is defined as below to control the
quadrotor position and the convergence of x and y to their
desired values.

Vp =
1

2

[
(x− xd)2 + ẋ2 + (y − yd)2 + ẏ2

]
(35)

with its derivative equals to

V̇p = ẋ(x− xd) + ẋẍ+ ẏ(y − yd) + ẏÿ (36)

Rewriting the acceleration components in the horizon-
tal plane

ẍ = uxu1, ÿ = uyu1 (37)

where

ux = cos (ϕ) cos (ψ) sin (θ) + sin (ϕ) sin (ψ) (38)

uy = cos (ψ) sin (ϕ)− cos (ϕ) sin (ψ) sin (θ) (39)

Assuming small Euler angles leads to:

ux = θd , uy = ϕd (40)

and substituting (37) into (36) gives

V̇p = ẋ (x− xd) + ẋu1ux + ẏ (y − yd) + ẏu1uy (41)

ux and uy are selected as follows to keep the Lyapunov
stability conditions.

ux =
− (x− xd)− kxẋ

u1
(42)

uy =
− (y − yd)− ky ẏ

u1
(43)

By maintaining the condition kx > 0 and ky > 0, the
stability condition of the Lyapunov function is satisfied:

V̇p = −kxẋ2 − ky ẏ2 < 0 (44)

Correspondingly, the neural network is used to adjust
the positive coefficients kx and ky:

kx = kx0 + εx

∫ t

0

(xd − x) sign

(
∇x
∇ux

)(
− ẋ

u1

)
dt (45)

ky = ky0 + εy

∫ t

0

(yd − y) sign

(
∇y
∇uy

)(
− ẏ

u1

)
dt (46)

where εx and εy are the respective learning rates that
determine the convergence speed of the neural network,
and kx0 and ky0 the initial values of kx and ky, respectively.

4.4 Desired Angle Calculation

Based on the Lyapunov method, the acceleration vector is
calculated as [8]:

a∗ = − (s− sd)− g − k1ṡ (47)

a is the sum of the acceleration caused by the rotor’s forces
and a∗ shows the desired value of this vector. Therefore, the
coordinate system will be set such that z-axis corresponds
to a∗; then the angular velocity of this system is calculated
as:

ωCE =


β̇3 sin (β2)

−β̇2
β̇3 cos (β2)

 (48)

Moreover:
ϕ̇

θ̇

ψ̇

 = ωBC + ωCE (49)
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Figure 3. Euler angles.


ϕ̇

θ̇

ψ̇

 =


β̇3 sin (β2)

−β̇2
β̇3 cos (β2)



+


cos (α3) cos (α1) sin (α3) 0

− sin (α3) cos (α1) cos (α3) 0

1 − sin (α1) 1



α̇1

α̇2

α̇3

 (50)

Selecting α̇1, α̇2, and α̇3 as
α̇1 = −kα1α1

α̇2 = −kα2α2

α̇3 = 0

(51)

leads to the desired value of the


ϕ̇

θ̇

ψ̇

 vector as:


ϕ̇d

θ̇d

ψ̇d

 =


β̇3 sin (β2)

−β̇2
β̇3 cos (β2)

+


cos (α3) cos (α1) sin (α3) 0

− sin (α3) cos (α1) cos (α3) 0

1 − sin (α1) 1



−kα1

α1

−kα2α2

0

 (52)

5. Simulation and Tests Results for a Rotor Failure

5.1 System Parameters

In this section, the performance of the proposed controller
is evaluated in the presence of parametric uncertainties

and disturbances by simulation in the MATLAB software.
The physical parameters of the quadrotor are set as
follows: total mass m = 0.5 kg, gravitational acceleration
g = 9.81 m/s2, distance from the center of each
rotor to the center of the gravity of the quadrotor
l = 0.17 m, mass moments of inertia in the x, y, and
z axes IB = diag([2.7, 2.7, 5.2]) , inertia of the propeller
Ip,zz=1.5, drag coefficients kd = diag([0.7, 0.7, 1.4]). In
the numerical values of m, IB , Ip,zz, and Kd parameters,
20% of uncertainty is considered. The purpose of
the controller design is to track the following desired
trajectory:

xd =

1 t ≤ 15 or t > 25

0 otherwise
,

yd =

1 t ≤ 10 or t > 20

0 otherwise
,

zd =

1 t ≤ 35

0 otherwise

5.2 Simulation with All Rotors

5.2.1 Test 1 (deviation in Euler angles):

Euler angles and desired angular velocity were set to zero
before starting this test. The results of the simulations are
displayed for the initial deviation in Euler angles:

ϕ0 = 1 , θ0 = −2, ψ0 = 3, ϕ̇0 = 0 , θ̇0 = 0, ψ̇0 = 0

As shown in Figs. 3 and 4, Euler angles and angular
velocity have reached their desired value after an initial
deviation of angles, i.e., the system has been adequately
stabilised.
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Figure 4. Angular velocity.

Figure 5. Euler angles.

5.2.2 Test 2 (Deviation in Angular Velocity)

Assuming that the vehicle body velocity is ϕ̇0 = 10 , θ̇0 =
−5, ψ̇0 = 5. The simulation results shown in Figs. 5 and
6 indicate that the Euler angles and angular velocity
have reached their desired value and the system has been
stabilised.

5.2.3 Test 3 (Evaluating the Performance of the Altitude
Controller Assuming a Rotor Failure)

In this test, the performance of the altitude controller
was evaluated based on the following initial conditions
z0 = 10 , ż0 = −5. Also, the first rotor was turned off. The
simulation results in Figs. 7 and 8 show that the system
has reached its desired values and is stable despite the
failure in one rotor.

5.2.4 Test 4 (Evaluating All the Integrated Controllers
With a Rotor Failure)

In this test, we assumed a rotor failure and asked the
quadrotor to still move along a rectangular route in the xy
plane and return to its starting point. The desired route of
this test has been defined as:

xd =

0 t > 10

1 otherwise
, yd =

0 t ≤ 5 or t > 15

1 otherwise

As shown in Figs. 9 and 10, the quadrotor in fact
moved along the predefined route even in the case of a
rotor failure.

To further validate this test, we investigated the
angular velocity of the four rotors (the first one being
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Figure 6. Angular velocity.

Figure 7. Altitude changes.

Figure 8. Rotor angular velocity.
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Figure 9. The system position.

Figure 10. The system movement route in XY plane.

turned off). As shown in Fig. 11, the system velocity was
stabilised.

5.3 Simulation with Two Rotor Failure

In this test, we assumed that two rotors failed. We then
asked the quadrotor to move through the following defined
route:

xd =

1 t ≤ 10 or t > 20

0 otherwise
,

yd =

1 t ≤ 15 or t > 25

0 otherwise
,

zd =

1 t ≤ 30

0 otherwise

Two cases were considered to evaluate the controllers.
First, the quadrotor does the task without the rotor failure.
Second, two rotors of the quadrotor are turned off after
8 and 22 s, respectively. The simulation results in Fig. 12
show that the quadrotor does not lose its stability and
completes its task with an acceptable performance in spite
of two rotors failure.

Furthermore, Fig. 13 indicates that the quadrotor
follows adequately the predetermined route. As shown in
Fig. 12, the failure of the rotor does not change the position
of the system and increase the error in the system, and
the tracking of the desired value is done correctly. As for
the angular velocity, Fig. 16, it demonstrated the good
behaviour of the system even after the failure of two rotors
(after, respectively, 8 and 22 s after the starting time).

The comparison of the simulation results is shown in
Table 1 and as shown, the steady-state error in the state
where the error occurs in the rotors is not much different
from the state without error.
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Figure 11. The rotor velocity.

Figure 12. Position and Euler angles.

Figure 13. Quadrotor’s path.
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Figure 14. Control inputs.

Figure 15. Adjustable parameters of controller.

Table 1
Quantitative Comparisons of Simulation Results

Steady State Error

Parameter Without Fault With Fault

x [m] 0.0011 0.0012

y [m] 3.16e-4 3.78e-4

z [m] 3.64e-10 3.64e-10

6. Conclusion

Controlling a UAV is of great importance to maintain its
stability and proper manoeuvrability. Failure of rotors is
one of the main issues that can severely affect the correct
performance of the quadcopter, and even failure of rotors
can cause the system to lose stability and crash. Therefore,
one of the important challenges in designing the controller
for these systems is maintaining stability in the event of
such errors. In this paper, control algorithms based on
Lyapunov’s theory are proposed to control and track the
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Figure 16. Rotors angular velocity (ω1 at 8s, ω2 at 22 s).

attitude, position, and altitude of a quadrotor with six
degrees of freedom and nonlinear dynamic behaviour, it is
proposed that even if the rotors fail, the quadrotor is able
to continue its mission and land safely without losing the
stability of the system.

In order to check the performance of the proposed
designed controller, the dynamic model of the quadrotor
along with the controller has been simulated in MAT-
LAB/Simulink, and the main results are summarised as
follows: (a) All state variables converge to their reference
values in sequence, even if their reference values change
suddenly at different instants, (b) Different paths of the
quadrotor are obtained by changing the reference positions
and different positions are also obtained by changing the
reference angles, (c) Position and velocity tracking errors
of all system state variables tend to zero, and according to
the simulation results in this article, the controller has a
very good performance.
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