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PREDICTION OF UAV POSITIONS USING

PARTICLE SWARM OPTIMISATION-BASED

KALMAN FILTER
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Abstract

The traditional Kalman filter (KF) algorithm solely relies on the

historical positioning information of the unmanned aerial vehicle

(UAV) itself for UAV position prediction. However, it fails to

accurately estimate the position after a longer period of time.

To address this issue, this paper proposes an improved PSO-

KF algorithm. The algorithm utilises a priori route information

to generate virtual measurement data and performs real-time

state corrections, thereby enhancing the accuracy of position

estimation. Additionally, to overcome the challenge of acquiring

statistical characteristics of measurement data noise, this paper

introduces a particle swarm optimisation algorithm to enhance and

optimise the measurement noise covariance matrix. Mathematical

simulation results verify that the proposed algorithm outperforms

the traditional KF in UAV position prediction, particularly in longer

time prediction scenarios, with significant improvements observed.
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1. Introduction

An unmanned aerial vehicle (UAV) is an autonomous
aircraft that operates without a human pilot. UAVs have
various applications, including reconnaissance, surveil-
lance, tactical missions, and more. They are used in
disaster scenarios to provide visual surveillance and aid in
locating survivors. UAVs are also utilised for aerial imaging
of farmland, assessing growing conditions, and gathering
topographic data of various terrains. Additionally, drones
are employed to collect water samples in the ocean
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for studying marine life and the chemical properties of
seawater and sediment [1]–[6]. Insect-inspired flying robots
combine biology and computing, offering efficient flight,
resilience, and versatility, thereby opening new possibilities
in the field of drones [7]–[9].

Drone position prediction plays a crucial role in
UAV operations and applications, enabling operators to
effectively control and manage flight paths and desti-
nations. In military and security sectors, drone position
prediction technology aids in identifying and predicting
the flight paths of enemy drones, facilitating necessary
defensive measures. In the commercial sector, it helps
optimise drone operations, enhancing operational efficiency
and safety. For instance, logistics companies utilise drone
location prediction to manage delivery routes, improving
cargo transportation efficiency. Moreover, drone position
prediction is utilised in weather forecasting, assisting
meteorologists in predicting the path and intensity of
natural disasters, such as hurricanes, enabling proactive
measures [10]–[15].

Regarding UAV position prediction, certain papers
[16] and [17] estimate UAV manoeuvre acceleration using
a constructed Kalman filter (KF) and LiDAR data, and
subsequently solve the integral to obtain the UAV’s
position in the future. However, this method has limitations
in predicting long-term positions and incurs higher costs
due to the requirement of LiDAR sensors. Another paper
[18] assumes UAV motion follows the Dubins curve, but
its applicability is limited. Papers [19]–[21] employ deep
learning methods for estimation, which eliminates the
need for UAV motion modelling but requires substantial
computational resources and may not meet real-time
prediction requirements under hardware constraints. Paper
[22] utilises a particle swarm algorithm to optimise filter
parameters and improve state estimation accuracy, but it
only uses sensor history data in constructing the KF, which
fails to address sudden acceleration changes during the
prediction process.

To address the issue of inaccurate position estimation
caused by sudden changes in UAV manoeuvre acceleration
during prediction, this paper proposes a novel KF
algorithm. The algorithm incorporates a priori route
information to construct virtual measurement data and
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performs real-time state corrections, thereby enhancing
position estimation accuracy. Additionally, a particle
swarm optimisation algorithm is introduced to overcome
the challenge of obtaining statistical characteristics of
measurement data noise, further improving prediction
accuracy in the proposed KF algorithm mentioned above.

2. UAV Equations of Motion and Observation
Equations

Define the navigation coordinate system (oFxF yF zF ):
The origin of the navigation coordinate system is the

position of the UAV at the moment of takeoff, noted as
origin oF . The oFxF is in the local horizontal plane and
points due north, while the oF yF points due east, and the
oF zF is determined by the right-hand rule. This coordinate
system is solidly connected to the Earth at the moment of
UAV takeoff, and the rotation of the Earth is not considered
here, so this coordinate system can be considered as an
inertial coordinate system [12].

2.1 Equation of Motion

Define the position, velocity, and acceleration of the UAV
in the navigation coordinate system as xr, vr, and ar,
respectively.

The state variable x of the drone consists of the
position, velocity, and acceleration of the drone, namely:

x =
[
xTr vTr aTr

]T
(1)

Use the Singer model to describe the acceleration of
the drone, namely

ȧrx = −λxarx + wtx (2)

ȧry = −λyary + wty (3)

ȧrz = −λzarz + wtz (4)

Among them, λx, λy, and λz represent the reciprocal
of the drone’s manoeuvring time constant in the x, y, and
z directions. A smaller value of this indicates that the
drone tends to perform uniform acceleration motion, while
a larger value indicates that the drone tends to perform
uniform velocity motion. wtx, wty, and wtz represent zero-
mean Gaussian white noise.

The motion equation is as follows:
ẋr = vr

v̇r = ar

ȧr = −λar + wt

(5)

Where λ is a diagonal matrix composed of λx, λy,
and λz, wt is a vector matrix composed of wtx, wty, and
wtz. the following equation of state:

ẋ = Fsx+ ws (6)

Among: Fs =



0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 −λx 0 0

0 0 0 0 0 0 0 −λy 0

0 0 0 0 0 0 0 0 −λz


After discretising the above equation with a certain

period ∆t, we get:

Φs = exp(Fs∆t) (7)

Then the discretised equation of state is

x(k + 1) = Φsx(k) + ws(k) (8)

The dynamic noise vector ωs(k) is a sequence of
Gaussian white random vectors.

ωs(k) =
[
0 0 0 0 0 0 wtx wty wtz

]T
(9)

And

E[ωs(k)] = 0E[ωs(k)ωs
T (k)] = Q (10)

2.2 Observation Equation

Since the UAV contains its own positioning system, its
positioning system outputs the UAV status information
at each moment, which includes: UAV position and
velocity information. Therefore, the observation equation
is established as follows:

y = Hx+ v (11)

Among: H =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0


where v is a column vector consisting of a combination

of position and velocity accuracy output from the UAV
positioning system.

3. Improved Kalman Filtering Algorithm

3.1 A Priori Observation Information

The route in Fig. 1 consists of two segments of the fold AB
and BC, where the coordinates of points A, B, and C are
[xa, ya, za], [xb, yb, zb], and [xc, yc, zc], respectively.
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Figure 1. Prior route information.

Point P represents a point on the route, and the
coordinates are denoted by [xp, yp, zp]. Therefore, the route
expressions in Fig. 1 are as follows:

xp − xa
xb − xa

=
yp − ya
yb − ya

=
zp − za
zb − za

xa ≤ xp ≤ xb
xp − xb
xc − xb

=
yp − yb
yc − yb

=
zp − zb
zc − zb

xb ≤ xp ≤ xc
(12)

The UAV regulatory platform oversees the monitoring
of UAVs, which are categorised into cooperative and non-
cooperative types. In this context, we will focus solely on
cooperative UAVs, which follow pre-planned flight paths.
Pre-planned flight paths are typically composed of line
segments, as shown in Fig. 1. Assuming that the UAV
follows the route in Fig. 1, the point [xrx, xry, xrz] is the
current position of the UAV, the following constraints can
be obtained here:
xrx − xa
xb − xa

=
xry − ya
yb − ya

=
xrz − za
zb − za

xa ≤ xrx ≤ xb
xrx − xb
xc − xb

=
xry − yb
yc − yb

=
xrz − zb
zc − zb

xb ≤ xry ≤ xc
(13)

it can be converted to:

〈


(xrx − xa)(yb − ya)− (xry − ya)(xb − xa) = 0

(xrx − xa)(zb − za)− (xrz − za)(xb − xa) = 0

(xry − ya)(zb − za)− (xrz − za)(yb − ya) = 0

P ∈ [A,B]


(xrx − xb)(yc − yb)− (xry − yb)(xc − xb) = 0

(xrx − xb)(zc − zb)− (xrz − zb)(xc − xb) = 0

(xry − yb)(zc − zb)− (xrz − zb)(yc − yb) = 0

P ∈ [B,C]

(14)

Further expressed as:

〈


xrx(yb − ya)− xry(xb − xa) = xa(yb − ya)− ya(xb − xa)

xrx(zb − za)− xrz(xb − xa) = xa(zb − za)− za(xb − xa)

xry(zb − za)− xrz(yb − ya) = ya(zb − za)− za(yb − ya)

P ∈ [A,B]


xrx(yc − yb)− xry(xc − xb) = xb(yc − yb)− yb(xc − xb)

xrx(zc − zb)− xrz(xc − xb) = xb(zc − zb)− zb(xc − xb)

xry(zc − zb)− xrz(yc − yb) = yb(zc − zb)− zb(yc − yb)

P ∈ [B,C]

(15)

3.2 Improved Filtering Algorithm

In this section, an improved KF algorithm (CKF)
is proposed. The course constraint equation of (15)
is approached as a virtual sensor, incorporating the
subsequent measurement equation:

yc = Hcx+ vc (16)

Among:

Hc =





yb − ya xa − xb 0 0 0 0 0 0 0

zb − za 0 xa − xb 0 0 0 0 0 0

0 zb − za ya − yb 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


P ∈ [A,B]



yc − yb xb − xc 0 0 0 0 0 0 0

zc − zb 0 xb − xc 0 0 0 0 0 0

0 zc − zb yb − yc 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


P ∈ [B,C]

(17)

The measured value of this virtual sensor is then
always:

yc =




xa(yb − ya)− ya(xb − xa)

xa(zb − za)− za(xb − xa)

ya(zb − za)− za(yb − ya)

P ∈ [A,B]


xb(yc − yb)− yb(xc − xb)

xb(zc − zb)− zb(xc − xb)

yb(zc − zb)− zb(yc − yb)

P ∈ [B,C]

(18)

Therefore, when the measurement information is
available, the measurement equation is 11. When the
measurement information is not updated, i.e., when it
is only predicted, the measurement equation is converted
from the above constraint, i.e., (16).

The algorithm for the filter is formulated as follows:

X̂(k/k − 1) = FsX̂(k − 1/k − 1) (19)

P (k/k − 1) = ΦsP (k − 1/k − 1)ΦT
s +Q (20)

if(measurement data update)

Hj = H (21)

else

Hj = Hc (22)

end

S(k) = HjP (k/k − 1)HT
j +R (23)

γ(k) = Z(k)−HjX̂(k/k − 1) (24)

if(‖S(k)‖2 ≥ χ ∗ γT (k)γ(k))

K(k) = P (k/k − 1)HT
j S

−1(k) (25)

X̂(k/k) = X̂(k/k − 1) +K(k)γ(k) (26)

P (k/k) = [I −K(k)Hj ]P (k/k − 1) (27)
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else

X̂(k/k) = X̂(k/k − 1) (28)

P (k/k) = P (k/k − 1) (29)

end
The above equation χ∗ is the protection threshold

value of the new interest, which prevents the KF state from
being corrected by the wrong measurement information,
and this method can improve the robustness of Kalman
filtering.

The flowchart of the modified KF is as follows:

Figure 2. Improved Kalman filtering.

4. Particle Swarm Optimised Improved
Kalman Filter

4.1 Introduction to Particle Swarm Optimisation

The particle swarm algorithm is an algorithm for solving an
optimal problem by simulating birds searching for food: it
assumes that a flock of birds is searching for food randomly
in an area where there is only one piece of food, and all
birds do not know where the food is, but they know how far
their current location is from the food, and then they find
the food based on collaboration and information sharing
among individuals in the flock.

In the particle swarm optimisation algorithm, each
solution can be represented by a bird (particle), and the
objective function is the food source that the flock needs to
find. The process of finding the optimal solution involves
two types of behaviour: individual behaviour and group
behaviour.

Individual Behaviour: The particle updates its position
according to its own optimal solution in the search process.

Population Behaviour: The particle updates its
position according to the optimal solution of the population
in the search process.

Suppose N particles form a 1-particle swarm and each
particle is a D-dimensional vector, then the position of
each particle is:

xi = xi1, xi2, . . . , xiD i = 1, 2, . . . , N (30)

The fitness value is calculated by substituting it
into the fitness function (the objective function of the
optimisation problem), and the position of the optimal
fitness value experienced by the ith particle is noted as the
individual historical optimum:

Pbesti = Pbest1, Pbest2, . . . , PbestD i = 1, 2, . . . , N (31)

The optimal position experienced by the entire particle
population is noted as the global optimum:

Gbesti = Gbest1, Gbest2, . . . , GbestD i = 1, 2, . . . , N (32)

After finding these two optimal values above, the
particle updates its velocity and position by the following
equation.

Vi+1 = Vi + c1 ∗ rand ∗ (Pbesti − xi)
+c2 ∗ rand ∗ (Gbesti − xi) (33)

xi+1 = xi + Vi+1 (34)

In the above equation, xi is the current position
of the particle. c1 and c2 are the learning factors.
According to the above equation, it is known that each
bird will depart in the direction optimal for itself and the
population [23].

4.2 Optimisation of Noise Covariance Matrices

The PSO algorithm is used to optimise the noise covariance
matrix in the improved KF introduced in the previous
section online. Subsequently, employing the methodology
outlined in Section 3.2, the filtering estimation is conducted
on the present state of the UAV in order to extract the
state information at time k denoted as X̂k.

Substituting X̂k into the observation equation y =
Hx, The resulting observation vector ŷk is obtained. The
observation residual vector is: Vk = ŷk − yk.

Smaller discrepancies between the estimated value and
its measurement indicate a more accurate estimation of
the UAV’s state. As a result, the difference between the
estimated and measured values can serve as the fitness
function to be minimised, and it can be expressed as
follows:

R = argR min
1

N

N∑
i=0

‖Vk−i‖22 (35)

where ‖•‖2 means the Euclidean distance, N is the
samples involved in the optimisation of covariance
matrices R.
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The flowchart of the algorithm is as follows:

Figure 3. Particle swarm optimisation-based KF.

5. Simulation Experiment and Analysis

With the above analysis, simulation experiments are
conducted in this section to verify. The simulation
conditions are: the initial position of the UAV in the
inertial navigation coordinate system is [0, 0,−10], the
initial velocity is [0, 0, 0], and the flight is extended along
the route shown in Fig. 4. The acceleration data noise of
its UAV is 0.2 m/s2, the output period is 10 ms, the whole
simulation duration is 16 s, and the prediction time is 9 s
starting from the 7th second.

Figure 4 shows the UAV route in horizontal space,
which consists of two sections of folded lines, both of which
have a height of 10 m and whose turning point coordinates
are [8, 8,−10].

To assess the effectiveness of the particle swarm
optimisation-based Kalman filtering algorithm (PSO-KF),
a comparison was conducted between the proposed method
and the approach outlined in [24]. Reference [24] utilises a
neural network to estimate the noise covariance of the KF.
The simulation comparison results are depicted in Fig. 5.

In Fig. 5, the red solid line represents the real-time
estimation error of the traditional KF, the green line
indicates the real-time estimation error of the NN+KF
approach, and the blue line corresponds to the estimation
error of the PSO-KF. Both the PSO-KF and the
approach from [24] outperform the KF-based position
estimation. This improvement is due to the adjustment
of the noise covariance matrix R based on the error
between measurements and estimations. The differences in
performance between the PSO-KF and [24] approach are
relatively minor.

The comprehensive effectiveness of the enhanced
Kalman Filtering algorithm (PSO-CKF) is evaluated by
contrasting it with the methodologies outlined in [25]

Figure 4. Two-dimensional display of routes.

Figure 5. Comparison of different methods.

and [26]. Reference [25] introduces an adaptive unscented
Kalman filtering (AUKF) algorithm, which integrates
an additional algorithm for real-time adaptation of
covariance matrices R and Q. Reference [26] presents a
distinct approach utilising random weighting to estimate
systematic errors within the observation model (RWKF).

The observations drawn from Fig. 6 emphasise that
when encountering a change in direction along the
route, the KF, PSO-KF, AUKF, and RWKF all exhibit
predictions that follow the existing trajectory. This
behaviour leads to notable deviations from the actual
path. In contrast, the PSO-CKF demonstrates its unique
capability by projecting a trajectory that aligns better with
the true path.

Figure 7 depicts the error curves for various filtering
algorithms, all of which initiate their predictions from the
7th second and continue for a prediction duration of 9 s.

The statistics presented in Table 1 illustrate the errors
between the position predictions and the true values for
the five filtering algorithms at intervals of 1 s, 5 s, and 9 s.
This indicates that PSO-CKF significantly enhances the
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Figure 6. Trajectory comparison.

Figure 7. Comparison of prediction errors.

Table 1
Error Statistics of Different Forecast Durations

Filter Algorithm 1 s 5 s 9 s

KF 0.61 7.12 16.47

AUKF 0.50 6.54 14.40

RWKF 0.51 6.59 14.54

PSO-KF 0.53 6.79 15.16

PSO-CKF 0.60 0.57 0.95

accuracy of UAV position prediction. This improvement
becomes more pronounced as the prediction duration
increases.

The algorithm’s tolerance to various noise conditions
was examined through adjustments in noise type and
magnitude. It was observed that the algorithm continued
to perform effectively as the standard deviation of the
UAV’s acceleration random noise increased from 0.2 m/s2

Figure 8. Starting the prediction after 7 s.

Figure 9. Starting the prediction after 12 s.

to 1 m/s2. However, as constant noise reached 0.1 m/s2,
signs of degradation in algorithm performance became
apparent. Subsequent research efforts will concentrate on
optimising and enhancing the algorithm’s performance in
the presence of constant noise conditions.

Simulations were also carried out for a specific scenario
in which the UAV’s flight path deviates from the pre-
planned route due to external intrusion. The simulation
results for this scenario are as follows:

From Fig. 8, it is evident that when prediction starts
at the 7-second mark, the performance of the PSO-CKF
is not as good as the KF. This is because the PSO-CKF
provides incorrect prior information, leading to incorrect
adjustments in the prediction results. However, when
prediction starts at the 12-second mark, the PSO-CKF
performs better than the KF. This is due to the real-time
updates of noise covariance through the particle swarm
algorithm and the presence of chi-squared tests, which
help exclude incorrect prior information. Therefore, even if
the UAV deviates from its pre-planned flight path due to
intrusion, the enhanced method’s predictions of the UAV’s
position will only experience short-term distortion.
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6. Conclusion

This study focussed on the prediction of UAV positions
and involved an in-depth investigation and improvement
of the Kalman filtering algorithm. In terms of trajectory
prediction, the PSO-CKF method outperformed other
techniques, including KF, PSO-KF, and methods men-
tioned in [25] and [26], particularly when dealing with
changes in path direction.

Through statistical analysis of the data presented
in Table 1, it was observed that PSO-CKF significantly
enhanced prediction accuracy, with improved performance
as the prediction time horizon increased. Additionally,
the study explored the algorithm’s performance when the
UAV deviated from its predefined flight path. The results
indicated that even in cases where the UAV deviated from
its intended course due to factors, such as intrusion, PSO-
CKF exhibited distortion in UAV position prediction only
in the short term.

Future research will concentrate on optimising and
refining the algorithm to operate effectively in the presence
of constant noise. In summary, this study has revealed
the potential of PSO-CKF in enhancing UAV trajectory
prediction accuracy and adapting to complex scenarios.
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