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ABSTRACT

This paper presents the application of optimal power
flow sensitivity in evaluating the optimal capacitor
location for injecting reactive power into a power system.
After the optimal power flow is solved, the sensitivity
analysis is applied to evaluate the change of total
generation cost with respect to the change of reactive
power at any bus. The optimal capacitor location is the
location where an increase in reactive power injection
yields the lowest total generation cost due to decreasing of
total system losses. This method greatly reduces the
computational work of computing optimal power flow for
several different systems in which capacitors are to be
installed. The sensitivity technique is applied to 5-bus
and 9-bus test systems. The results show that the
technique gives the same answers as the simple technique
in which more calculations are needed.

KEYWORDS
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1. Introduction

The reactive power injection is very useful for power
system improvement [1],[2]. It increases power factor
and reduces real power losses, which results in reducing
total generation cost. Installing capacitor banks in the
system is one of the techniques to inject reactive power
into the system. The first step of installing capacitor
banks into a power system is to determine the appropriate
location. In this paper, the optimal location of the
capacitor banks is considered the location where capacitor
installation yields the largest savings in the total
generation cost while the power system can still serve
total loads. The Optimal power flow (OPF) problem is
used to determine the optimal system operating point at
the lowest total generation cost while enforcing a variety
of operational constraints such as limits of bus voltages,
line flows, real power generator and reactive power
generator. The OPF problem has a long history [3] in
power system research. A variety of numerical techniques
developed for this problem are as followed:
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1. Non-linear programming method (NLP) [4], [6] deals
with problems involving nonlinear objective function and
constrains.

2. Quadratic programming method [4], [7] is a nonlinear
programming whose objective function is quadratic with
linear constraints.

3. Linear programming method (LP) [5], [6] treats
problems with constraints and objective function
formulated in linear forms with non-negative variables.
The simplex method is known to be quite effective for
solving LP problems.

4. Interior point method [5], [7], [8] is applied to NLP
and QP problems because of the enhanced performance
and convergence properties.

5. Lagrange Newton method [5], [9], [10], [11] can solve
nonlinear problems based on KKT conditions.

One way to evaluate the value of placing capacitor
bank at any bus is by comparing the objective function
(total generation cost) of the OPF problem of the system
with a capacitor installed at that bus to that of the system
without the capacitor (or so called “base case”). The bus
that gives the largest difference in the objective functions
is the optimal location for the capacitor. The method is
called differencing method. An alternative method of
evaluating the value of capacitor placement is achieved by
applying sensitivity analysis to the base case OPF.
Adding capacitor bank to any bus in a power system is
equivalent to reducing reactive load at that bus. As a
result, the optimal system operating point will be changed.
The sensitivity analysis is therefore applied to the optimal
solution after the base case OPF is solved, in order to
evaluate the change of the objective function due to
reducing one unit of reactive load at each bus. The bus
that yields the biggest change, in other words, the largest
incremental saving cost, is considered the optimal location
of the capacitor bank. The sensitivity method requires less
computational work since only one OPF is needed.

The sensitivity method is described in details in the
next section, and applied to 5-bus and 9-bus test systems.
The results from the test systems by sensitivity analysis
give the same incremental saving costs, and thus the same
optimal locations as the ones from the differencing
method.


corinna



2. Methodology

From OPF methods mentioned above, the Lagrange
Newton method is employed in this paper because
sensitivity analysis needs the matrix of the second order
derivatives of Lagrange function from OPF problem to
determine the change of the objective function with
respect to the change of injected reactive power.

2.1 Optimal Power Flow

Optimal power flow is used to obtain the optimal
system operating point while minimizing total system
generation cost subject to equality and inequality
constraints. The equality constraints are the power balance
equations (real and reactive power equations), and the
inequality constraints include voltage limits, limits on
transmission line flows, generator real power and reactive
power limits and other control devices. The optimal
power flow model can be written as followed:

Obijective function: The total generation cost

min C(Rs) = 3.Ci(Ps) (1)

i=1
Where C;(Py )= o; + BPs; +7P5 is the cost of generation at
generator bus i.

Subject to

Equality constraints : Power balanced equations

P(OV,P;/P) =0 i=12,..,N )
Qi(0V,Qs/Q)=0 i=12,..,N 3)

where

7 voltage angle

V voltage magnitude

Ps variable real power generator

Qg variable reactive power generator

P real power load

Q. reactive power load

N number of all buses in the system

Ng number of generator buses.

Equations (2) and (3) represent vectors of power
flow equations at bus i, where 6,v,P; and Qg are the

variables to be solved, while P _and Q, are independent
parameters.

Inequality constraints: Limitations of real and reactive
power generations, bus voltages and line flows

Vimin < Vi <Vimge  i=12,.N ()
Pei,min < Foi < Pai max i=12,..,Ng ®)
Qgi,min < Qi < Qgimax ~ 1=12,...Ng (6)

< time  §=12..N, @)

where
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In absolute current flow in line j
N, number of lines.

2.2 Lagrange function

To solve the optimal power flow problem by
Newton method, the most common method of handling
equality and inequality constraints is based on forming the
Lagrange function for the problem defined as followed:

NG N
L=> (o +BPsi +7P&) + 2. 4piP(O.V P I P)
i=1 i=1

N Nj
+ 2 20iQi(0.V, Qe Q) + X Aine i1 (V)
i1 i

+ z i (G (Y) = fi) + Z wi(fi =) (8)

icAH ieAL
where
f,ry  vectors of binding variable
fui upper limit of binding variable
fLi lower limit of binding variable
Api Lagrange multiplier of real power balanced at
bus i
Aqi Lagrange multiplier of reactive power balanced
atbus i
Zine,j  Lagrange multiplier of line flow j
m Lagrange multiplier of binding variable at upper
limit (u, >0)
L Lagrange multiplier of binding variable at lower
limit (4 >0).

From Lagrange function in equation (8), the optimal
system operating point can be obtained by adjusting the
Lagrange function to satisfy first order derivatives
ignoring non-binding constraints as:

.
oL oL oL oL
Z)=V,L(2)=| — — — —| =0 9

0@)=V,L2) {av 2z aﬂj ©)

where

Y state vector [6,V,Ps,Qg, 1, '

z vector of all variables [Y, 2, 11, ]

A vector of Lagrange multipliers of equality

constraints.

Equation (9) is called the Karush-Kuhn-Tucker
(KKT) conditions solved by applying the Taylor’s series
expansion by ignoring the high-order terms and can be
written as:

dg(2)
0z AZ =-g(2)
From equation (10), dg(z)/dz is the second order

derivatives of Lagrange function with respect to vector of

(10)



variables, Z, denoted by w which can be written in
matrix form as:

o
oY
H 37 AL A AY oL
J 0 - 0] A1 oA
Ag i Ay |
A0 o 0 |lAm Oty
o
L O |

where Hessian matrix: H, and Jacobian matrices:
J, Ajand A are denoted as:

AL ,_ L
ay? '’ BA8Y
o°L o%L

and = , =
g 0Y o oY

From equation (10), the Newton step can be obtained
from solving

AZ =-Wt.g(2) (12)

2.3 Sensitivity Analysis

Sensitivity analysis [12], [13] is used to find the
optimal capacitor location in which yields the lowest total
generation cost. The optimal system operating point from
OPF problem changes as some parameters change.
Sensitivity analysis evaluates a change of the optimal
system operating point due to a change in a parameter &
by taking the first order derivatives of g(z) vector in

equation (9) with respect to parameter ¢ as followed.

Elements of the first row are in the terms of

d|oL d
—| = |===0(ON Ay, Ag., Aing) =0
d£|:69:| dgg( p ﬂQ ﬂ“hne)

de

d m,@.%i@.mi@.%
00 0s oV oe ('Mp oe

26
L 09 %% 09  Ohine
0dg Oc Ok, O
V2,L-V,0+V5 L-VV +v51pL.v€/1p+v§ﬂQ|_.vg/1Q =0

+V12%ine L'Vg/‘{ﬁne (12)
Elements of the second row are in the terms of

d| oL d
[7}:Eg(9,V,ip,ﬁQyﬂ1ine) =0

de| oV
i[ﬁ}_@.%+@.ﬂ+i@l.%
delov| 06 o oV os on, oe

.09 O 09 Ok
0dg 08 Ok, O

Vi,L-V 0+V2,L-VV +v51p|_.vgzp +v§bL.vng =0

+v\2//11ine I-'v.s/lline (13)

Elements of the third row are in the terms of

d| oL d
= == g(Ps,4,) =0
ds{@PG} dsg(G 2

d {BL }_ag‘aph og O

de

oPs | 0Py 0e 04, 0O
Vesrs L VoPs +Vig s, LV, Ay =0 (14)

Elements of the forth row are in the terms of

d| oL d
ds{}:dgg(%) =0

Qg
djo|_ag %% _
de| 0Qs | 0l O
VéioL Vil =0 (15)

Elements of the fifth row are in the terms of
d| oL d
{} = d*@(ﬂnne) =0
&

de| a1,
iail- — 89 _aﬂﬁne =0
de|al, | ony, oe
VIZMHneL'vgﬂ'Iine =0 (16)

Elements of the sixth row are in the terms of

d| oL d
—| == |=—0g(6.V,P;/P)=0
dg{a/lp} dgg( o /P

dfo] o900 g v og R g R
de Blp 00 0s oV o0s 0Py O¢ OP. oOs

Vigol V04 Vi LV 4V o LV, Ps+V3 o L-V,P =0
vﬁpgl_.vgmvipvl_.vgv +vipPG L-V,P;+V,P =0
VipoL Vo0 +Vi LV +VE o LV, Po=-V,P (17)

Elements of the seventh row are in the terms of

d| oL d
dg|:6/,iQi|_dgg(€vV7QG/QL)_o

djoL|_og 00 09 vV 39 Qs 09 0Q _
de|0dg | 00 0c OV 0 0Qg 0s Q. Oe
VigoL Vo0 + Vi L- V.V + V05 L-V,Q5 +Vigq L-V,QL =0
vagL-vgawiQV L-V,V +V§QQG L-V,Qs+V,Q, =0

VigoL Vo0 +VigyL-V.V + V50 LV, Qs =-V,Q (18)
Elements of the eighth row are in the terms of

d| oL d
— =—g(\V,1,)=0
dg{ﬁﬂﬂnj dsg( )

d) o |_%9 00,0 oV, a9 o _
de|0dye | 00 06 N s ol oe

Vil Ve 0+V5 LV V+VE LV 1 =0 (19)




Elements of the binding variables at upper limit

d| oL d
—|—|=——oa(f /fy)=0
dg{%} Lo/ )
[ s aw, g ot _
de|duy | of(Y) de  ofy oe
V/Z‘Hf(Y)L'vefW)"‘vinHL~V£fH =0

V2 oLV F(Y)=V, fy =0

VZ LV f(Y)=V, 1, (20)
Elements of the binding variables at lower limit
d| oL d
—|—=—|=—0g(f(Y)/f)=0
dg{@yl_} dgg( (Y)/ )
djo|__dg o), 09 of _j
de| oy | of(Y) o0e oOf o
V2 LV f(Y)+V2 LV, f =0
V2 LV E(Y)+V, fL =0
ViLf(Y)L'ng(Y):—chL (21)

Equations (12) to (21) can be expressed in a matrix form
as followed:

W-V,Z*(e)=M (22)

where W is the matrix of the second order derivative of
Lagrange function with respect to z from the OPF
problem and is defined as:

[VALVAL 0 0 0 VALVRLVR L0 0 0 0
wm W oy Vg L%mi
Vo VwL 0 0 0 Vi LVG, LV, L& 0 0 0
[}
2 2 | T
0 0 Vipl 0 0 VgL 0 0 10Bp 0 0
2 ' T
oooooov%l_oiooal;*q;o
2 | T
0 0 0 0 0 0 0 VL0 0 0 By
2 2 2 |
Vil ViyLVigl 0 0 0 010 0 0
[}
VigbViyl 0 VgL 0 0 0 0 io 0 0 o0
Vi Vik 00 Vil 0 0 010 0 0 0
0O Bw 0 O O O O 010 0O 0 O
[}
0 0 Bwg O 0 0 0 0 io 0 0 0
0 0 0By O 0O 0 010 0 0 0
| 0 0 0 0 By O 0 0, 0 0 0 0

The element B,», in the W matrix is a matrix of

binding limits on voltages. If the voltage is binding at its
upper limit, the value of the element is 1. If it is binding
at the lower limit, the value is -1. Bp «p , Bg «q, and
By« are similarly defined. The other terms in equation
(22) are:

viz* :[vle viv

T T T
Va‘ PG V&‘QG Va IIine

V1|

Vi Vi | (23)

T
Vgﬂﬁne

Vidg
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MT = [0¢ ‘—VI at ‘_VIQL ‘OT\H ‘ Vit Vi fLii| (24)
where
z" vector of the optimal system operating point
0y zero vector of state vector (Y ) dimension
V.P vector of dimension N with elementv P, for
ie{l,2..,N}
Vv.Q_  vector of dimension N with element v,Q,; for
ie{l2,.,N}
Oy, zero vector of dimension N,
V.fy  vector of upper binding variables dimension
v.f;  vector of lower binding variables dimension

Optimal system operating point will change after a
capacitor bank is added. Capacitor bank installation at any
bus is equivalent to reducing reactive power load at that
bus. Reactive power is therefore a parameter to be
considered, denoted by ¢ . This method calculates the rate
at which functions of the system operations change as a
parameter & changes given that the optimality is
maintained.

From equations (22), (23) and (24), let ¢ be reactive
power load at any bus j, thatiss =Q; , we have

W Vo, Z"=M (25)
The sensitivity of the optimal system operating point is
* -1
Vo Z"=W™*M (26)
and
M = of [0} |-V, Q|03 oF |
:[o§ 0%]0...0 ~10...0[0%,[0F ] (27)
bus i
where e
0y zero vector of state vector (Y ) dimension
N zero vector of dimension N
OTNI zero vector of dimension N,
0g zero vector of binding variables dimension
Since injecting reactive power into a system reduces
total system losses, and thus reduces real power

generation and total generation cost. Therefore, the
interested function for sensitivity analysis is the total
generation cost at the optimal operating point, which is
the objective function of the base case OPF. The optimal
total generation cost is expressed in terms of a
parameter ¢ as:

NG
C= (o + P (&) +7iP% (&) (28)
i=1

where & is the injected reactive power at any bus.



Therefore, the sensitivity analysis is done by taking
the derivative of the total system generation cost with
respect to ¢ .

Ng
V,C =Y (BVP(e)Ps; +27iPsV .5 () (29)

i=1
Injecting reactive power at busj, by adding a
capacitor bank, is equivalent to reducing reactive power
load at that bus, then the parameter iss=Qy;, and (29)

becomes
NG * *
Vo, €= le (ﬂiVQLJ— Foi +27iF6iVay Pai)
i=

Ng
Vo€ =2 Vo, Pail B +27P | (30)
i=1
The sensitivity of the total generation cost with
respect to the change in reactive power load, Vq,C in

equation (30), is considered the incremental saving cost of
capacitor installation at bus j, which can be obtained

once the base case OPF is solved and Vi P is evaluated

from equation (26).

3. Case studies

The optimal location for capacitor bank is
considered the bus that gives the largest savings in total
generation cost when the capacitor is added. Therefore,
there are two methods to compute such savings: the
differencing method and the sensitivity method. The
differencing method is achieved by comparing the
objective functions of two solved OPF problems: the base
case OPF and the OPF with 1 MVAr reactive load
reduced at one load bus. For the system with N load
busses, the OPF must be solved N+1 times. On the
other hand, the sensitivity method solves base case OPF
once, and then the sensitivity analysis is applied as
discussed above in order to determine the savings.

In this study, the test systems are calculated by both
differencing and sensitivity methods. The OPF program is
written in MATLAB®. The results from two methods are
compared. Finally, the optimal capacitor placement can
be considered.

3.1 Case study 1

The model of 5-bus test system modified from the
14-bus IEEE test system is a simple power system with
three generators connected at busses 1, 2 and 3 as shown
in Fig. 1. The incremental saving costs of the 5-bus
system determined from the differencing and the
sensitivity methods are shown in Table 1.

From Table 1, incremental saving costs obtained
from both methods are approximately the same. They
give the highest values at bus 4, hence it is the optimal
location for capacitor installation for this system.
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Although the results from two methods are the same, the
sensitivity analysis uses much less calculation effort.

Bus 1 6‘_

Fig. 1. The 5-bus test system

Table 1. Incremental saving costs for 5-bus test system

Incremental Saving Cost ($/MVAr-hr)
Bus Number - - —
Differencing method Sensitivity method

1 0 0

2 6.5305 6.5306
3 10.9381 10.9392
4 16.4360 16.4421
5 13.3827 13.3827

3.2 Case study 2

The system used in case study 2 is a 9-bus test
system from Power System Engineering Research Center
(PSERC) [14] of Cornell University. The system has three
generators and nine transmission lines as shown in Fig. 2.
The OPF results of the system using two methods
discussed earlier are shown in Table 2.

Bus 9 + Bus 2 @ Bus 8 Bus 7 A
| | ] |
I ] I ] I

Bus 1 @ Bus 4 + Bus 5 + Bus 6 V

Fig. 2. The 9-bus test system of PSERC

The results of both methods give the same optimal
location for capacitor installation with approximately
same incremental saving costs, just like the 5-bus test
system. The optimal capacitor location for the 9-bus
system is therefore bus 8 with 30.43 $/MVAr-hr savings.

Bus 5 Bus 4 52 A Bus 3

V Bus 2

Bus 3



Note that the incremental saving costs of buses 1, 2
and 3 of the 9-bus system (and bus 1 of 5-bus system) are
zeros since they are generator buses without loads.

Table 2. Incremental saving costs for 9-bus test system

Bus Number . Incremental Saving Cost ($/_I\/II\(Ar—hr)
Differencing method Sensitivity method

1 0 0

2 0 0

3 0 0

4 22.0873 22.0952
5 21.1112 21.1475
6 115174 11.5162
7 26.3012 26.3012
8 30.4265 30.4271
9 27.8610 27.3638

4. Conclusions

The sensitivity method for evaluating the value of
capacitor placement is achieved by applying sensitivity
analysis to the base case OPF. OPF by Lagrange Newton
method is employed in this paper since W matrix is
needed to determine the change of the objective function
with respect to the change of injected reactive power. The
bus that yields the biggest change, in other words, the
largest incremental saving cost, is considered the optimal
location of the capacitor bank. The proposed sensitivity
method is tested on 5-bus and 9-bus systems. The results
are compared to the ones from the differencing method.
Both methods give the same optimal location with
approximately the same saving costs. However, the
sensitivity method requires much less computational work
since only one OPF computation is needed.
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