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ABSTRACT 

This paper presents the application of optimal power 
flow sensitivity in evaluating the optimal capacitor 
location for injecting reactive power into a power system.  
After the optimal power flow is solved, the sensitivity 
analysis is applied to evaluate the change of total 
generation cost with respect to the change of reactive 
power at any bus. The optimal capacitor location is the 
location where an increase in reactive power injection 
yields the lowest total generation cost due to decreasing of 
total system losses.  This method greatly reduces the 
computational work of computing optimal power flow for 
several different systems in which capacitors are to be 
installed.  The sensitivity technique is applied to 5-bus 
and 9-bus test systems.  The results show that the 
technique gives the same answers as the simple technique 
in which more calculations are needed. 
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1. Introduction 

The reactive power injection is very useful for power 
system improvement [1],[2].  It increases power factor 
and reduces real power losses, which results in reducing 
total generation cost. Installing capacitor banks in the 
system is one of the techniques to inject reactive power 
into the system.  The first step of installing capacitor 
banks into a power system is to determine the appropriate 
location.  In this paper, the optimal location of the 
capacitor banks is considered the location where capacitor 
installation yields the largest savings in the total 
generation cost while the power system can still serve 
total loads.  The Optimal power flow (OPF) problem is 
used to determine the optimal system operating point at 
the lowest total generation cost while enforcing a variety 
of operational constraints such as limits of bus voltages, 
line flows, real power generator and reactive power 
generator.  The OPF problem has a long history [3] in 
power system research. A variety of numerical techniques 
developed for this problem are as followed: 

1. Non-linear programming method (NLP) [4], [6] deals 
with problems involving nonlinear objective function and 
constrains. 
2. Quadratic programming method [4], [7] is a nonlinear 
programming whose objective function is quadratic with 
linear constraints. 
3. Linear programming method (LP) [5], [6] treats 
problems with constraints and objective function 
formulated in linear forms with non-negative variables. 
The simplex method is known to be quite effective for 
solving LP problems. 
4. Interior point method [5], [7], [8] is applied to NLP 
and QP problems because of the enhanced performance 
and convergence properties. 
5. Lagrange Newton method [5], [9], [10], [11] can solve 
nonlinear problems based on KKT conditions. 

One way to evaluate the value of placing capacitor 
bank at any bus is by comparing the objective function 
(total generation cost) of the OPF problem of the system 
with a capacitor installed at that bus to that of the system 
without the capacitor (or so called “base case”).  The bus 
that gives the largest difference in the objective functions 
is the optimal location for the capacitor.  The method is 
called differencing method.  An alternative method of 
evaluating the value of capacitor placement is achieved by 
applying sensitivity analysis to the base case OPF.  
Adding capacitor bank to any bus in a power system is 
equivalent to reducing reactive load at that bus.  As a 
result, the optimal system operating point will be changed. 
The sensitivity analysis is therefore applied to the optimal 
solution after the base case OPF is solved, in order to 
evaluate the change of the objective function due to 
reducing one unit of reactive load at each bus.  The bus 
that yields the biggest change, in other words, the largest 
incremental saving cost, is considered the optimal location 
of the capacitor bank.  The sensitivity method requires less 
computational work since only one OPF is needed.  

The sensitivity method is described in details in the 
next section, and applied to 5-bus and 9-bus test systems.  
The results from the test systems by sensitivity analysis 
give the same incremental saving costs, and thus the same 
optimal locations as the ones from the differencing 
method. 
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2. Methodology 
From OPF methods mentioned above, the Lagrange 

Newton method is employed in this paper because 
sensitivity analysis needs the matrix of the second order 
derivatives of Lagrange function from OPF problem to 
determine the change of the objective function with 
respect to the change of injected reactive power.   

2.1 Optimal Power Flow 

Optimal power flow is used to obtain the optimal 
system operating point while minimizing total system 
generation cost subject to equality and inequality 
constraints. The equality constraints are the power balance 
equations (real and reactive power equations), and the 
inequality constraints include voltage limits, limits on 
transmission line flows, generator real power and reactive 
power limits and other control devices. The optimal 
power flow model can be written as followed:  

Objective function: The total generation cost 

                     (1) ( )
1

min  ( )
NG

G i GiPG i
C P C P

=
= ∑

Where ( ) 2
i= i Gi i Gi i GiC P P Pα β γ+ +  is the cost of generation at 

generator bus . i
 
Subject to 

Equality constraints : Power balanced equations 
 
          ( , , / )  0               1,2,...,i G LP V P P i Nθ = =                  (2) 
          ( , , / ) 0               1,2,...,i G LQ V Q Q i Nθ = =                  (3) 

where 
θ  voltage angle 
V  voltage magnitude 

GP  variable real power generator 

GQ  variable reactive power generator 

LP  real power load 

LQ  reactive power load 
N  number of all buses in the system 

GN  number of generator buses. 

Equations (2) and (3) represent vectors of power 
flow equations at bus , where i , , GV Pθ  and are the 
variables to be solved, while and are independent 
parameters.  

GQ

LP LQ

Inequality constraints: Limitations of real and reactive 
power generations, bus voltages and line flows  
 
                             (4) ,min ,max             1,2,...,i i iV V V i≤ ≤ = N

N

N

                             (5) ,min ,max         1,2,...,Gi Gi Gi GP P P i≤ ≤ =

                             (6) ,min ,max        1,2,...,Gi Gi Gi GQ Q Q i≤ ≤ =

                            ,max I          1,2,...,j j lI j≤ = N                (7) 

where 

I j  absolute current flow in line j  

lN  number of  lines. 
 
2.2  Lagrange function  

To solve the optimal power flow problem by 
Newton method, the most common method of handling 
equality and inequality constraints is based on forming the 
Lagrange function for the problem defined as followed:  

        2
i

1 1
( )  ( , ,

N NG

i Gi i Gi Pi i G L
i i

/ )L P P P V P Pα β γ λ θ
= =

= + + +∑ ∑              

                ,
1 1

( , , / )  ( , )
NN l

Qi i G L line j j
i j

Q V Q Q I Vλ θ λ θ
= =

+ +∑ ∑

              
A AH L

( ( ) )  ( ( ))Hi i Hi Li Li i
i i

f Y f f f Yµ µ
∈ ∈

+ − + −∑ ∑     (8)                      

where 
( )if Y  vectors of binding variable 

Hif    upper limit of binding variable  

Lif   lower limit of binding variable  

Piλ   Lagrange multiplier of real power balanced at 
               bus i  

Qiλ    Lagrange multiplier of reactive power balanced 
at bus  i

,line jλ  Lagrange multiplier of line flow j  

Hµ   Lagrange multiplier of binding variable at upper 
limit ( 0H )µ ≥  

Lµ   Lagrange multiplier of binding variable at lower 
limit ( 0L )µ ≥ . 

 
From Lagrange function in equation (8), the optimal 

system operating point can be obtained by adjusting the 
Lagrange function to satisfy first order derivatives 
ignoring non-binding constraints as: 

        ( ) ( ) 0
T

Z
H L

L L L Lg Z L Z
Y λ µ µ

⎡ ⎤∂ ∂ ∂ ∂
= ∇ = =⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

       (9) 

where 
Y  state vector [ ]  , , , , T

G G LV P Q Iθ

Z  vector of all variables [ ]  , , , T
H LY λ µ µ

λ  vector of Lagrange multipliers of equality                                  
               constraints. 

Equation (9) is called the Karush-Kuhn-Tucker 
(KKT) conditions solved by applying the Taylor’s series 
expansion by ignoring the high-order terms and can be 
written as: 

    

( ) ( )dg Z Z g Z
dZ

⋅ ∆ = −                        (10)   

From equation (10), is the second order 
derivatives of Lagrange function with respect to vector of 

( ) /dg Z dZ
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variables, Z , denoted by W which can be written in 
matrix form as: 

                     0 0

0 0

H L
T T T

HH
HLL

L

L
Y

YH J A A L

J
LA

A
L

λλ
µ

µµ

µ

∂⎡ ⎤
⎢ ⎥∂⎢ ⎥⎡ ⎤ ∆ ∂⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂∆⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ∂⎢ ⎥∆ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂∆⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎢ ⎥
∂⎢ ⎥

⎢ ⎥∂⎢ ⎥⎣ ⎦

 

where Hessian matrix: , and Jacobian matrices: H
J , HA and LA are denoted as: 

    
2

2
LH

Y
∂

=
∂

 ,              
2LJ

Yλ
∂

=
∂ ∂

          

and           
2

H
H

LA
Yµ

∂
=
∂ ∂

,         
2

L
L

LA
Yµ

∂
=
∂ ∂

 

 
From equation (10), the Newton step can be obtained 

from solving 
1 ( )Z W g Z−∆ = − ⋅                                (11) 

 
2.3  Sensitivity Analysis 

Sensitivity analysis [12], [13] is used to find the 
optimal capacitor location in which  yields the lowest total 
generation cost. The optimal system operating point from 
OPF problem changes as some parameters change. 
Sensitivity analysis evaluates a change of the optimal 
system operating point due to a change in a parameter ε  
by taking the first order derivatives of ( )g Z  vector in 
equation (9) with respect to parameter ε  as followed. 

Elements of the first row are in the terms of 

   ( , , , , ) 0p Q line
d L d g V

d d
θ λ λ λ

ε θ ε
∂⎡ ⎤ = =⎢ ⎥∂⎣ ⎦

 

                 
0p

p

Q line

Q line

d L g g V g
d V

g g

λθ
ε θ θ ε ε λ ε

λ λ
λ ε λ ε

∂∂ ∂ ∂ ∂ ∂ ∂⎡ ⎤ = ⋅ + ⋅ + ⋅ =⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦

∂∂ ∂ ∂
+ ⋅ + ⋅
∂ ∂ ∂ ∂

                     

        2 2 2 2 0V pp QL L V L Lθθ ε θ ε θλ ε θλ εθ λ∇ ⋅∇ +∇ ⋅∇ +∇ ⋅∇ +∇ ⋅∇ =Qλ

                                                       (12) 2
lineline Lθλ ε λ+∇ ⋅∇

Elements of the second row are in the terms of 

( , , , , ) 0p Q line
d L d g V

d V d
θ λ λ λ

ε ε
∂⎡ ⎤ = =⎢ ⎥∂⎣ ⎦

 

      
0p

p

Q line

Q line

d L g g V g
d V V

g g

λθ
ε θ ε ε λ ε

λ λ
λ ε λ ε

∂∂ ∂ ∂ ∂ ∂ ∂⎡ ⎤ = ⋅ + ⋅ + ⋅ =⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦

∂∂ ∂ ∂
+ ⋅ + ⋅
∂ ∂ ∂ ∂

 

   2 2 2 2 0V VV V p V Qp QL L V L Lθ ε ε λ ε λ εθ λ∇ ⋅∇ +∇ ⋅∇ +∇ ⋅∇ +∇ ⋅∇ =λ

  2
V lineline Lλ ε λ+∇ ⋅∇                                                     (13) 

Elements of the third row are in the terms of 

      ( , ) 0G p
G

d L d g P
d P d

λ
ε ε
⎡ ⎤∂

= =⎢ ⎥∂⎣ ⎦
 

      0pG

G G p

d L g P g
d P P

λ
ε ε λ ε

∂⎡ ⎤∂ ∂ ∂ ∂
= ⋅ + ⋅ =⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦

                     

              2 2 0P P G P pG G G pL P Lε λ ε λ∇ ⋅∇ +∇ ⋅∇ =                      (14) 

Elements of the forth row are in the terms of 

     ( ) 0Q
G

d L d g
d Q d

λ
ε ε
⎡ ⎤∂

= =⎢ ⎥∂⎣ ⎦
 

                0Q

G Q

d L g
d Q

λ
ε λ ε

∂⎡ ⎤∂ ∂
= ⋅ =⎢ ⎥∂ ∂ ∂⎣ ⎦

                     

                              2 0Q QG Q Lλ ε λ∇ ⋅∇ =                             (15) 

Elements of the fifth row are in the terms of 

      ( )line
l

d L d g
d I d

λ
ε ε
⎡ ⎤∂ 0= =⎢ ⎥∂⎣ ⎦

 

                0line

l line

d L g
d I

λ
ε λ ε
⎡ ⎤∂ ∂ ∂

= ⋅ =⎢ ⎥∂ ∂ ∂⎣ ⎦
                     

                             2 0I linel line Lλ ε λ∇ ⋅∇ =                            (16) 

Elements of the sixth row are in the terms of 

             ( , , / ) 0G L
p

d L d g V P P
d d

θ
ε λ ε

⎡ ⎤∂
= =⎢ ⎥

∂⎢ ⎥⎣ ⎦
                

0G L

p G L

d L g g V g P g P
d V P P

θ
ε λ θ ε ε ε ε

⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= ⋅ + ⋅ + ⋅ + ⋅ =⎢ ⎥

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
                       

2 2 2 2 0V P G Pp p p G p LL L V L P L Pλ θ ε λ ε λ ε λ εθ L∇ ⋅∇ +∇ ⋅∇ +∇ ⋅∇ +∇ ⋅∇ =  
2 2 2 0V P Gp p p GL L V L P Pλ θ ε λ ε λ ε εθ L∇ ⋅∇ +∇ ⋅∇ +∇ ⋅∇ +∇ =  
2 2 2

V P Gp p p GL L V L Pλ θ ε λ ε λ ε εθ∇ ⋅∇ +∇ ⋅∇ +∇ ⋅∇ = −∇ LP            (17) 

Elements of the seventh row are in the terms of 

( , , / ) 0G L
Q

d L d g V Q Q
d d

θ
ε λ ε

⎡ ⎤∂
= =⎢ ⎥

∂⎢ ⎥⎣ ⎦                 

0G L

Q G L

d L g g V g Q g Q
d V Q Q

θ
ε λ θ ε ε ε ε

⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= ⋅ + ⋅ + ⋅ + ⋅ =⎢ ⎥

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
2 2 2 2 0V Q G Q LQ Q Q G Q LL L V L Q L Qλ θ ε λ ε λ ε λ εθ∇ ⋅∇ +∇ ⋅∇ +∇ ⋅∇ +∇ ⋅∇ =

2 2 2 0V Q G LQ Q Q GL L V L Q Qλ θ ε λ ε λ ε εθ∇ ⋅∇ +∇ ⋅∇ +∇ ⋅∇ +∇ =

2 2 2
V Q G LQ Q Q GL L V L Q Qλ θ ε λ ε λ ε εθ∇ ⋅∇ +∇ ⋅∇ +∇ ⋅∇ = −∇           (18) 

Elements of the eighth row are in the terms of 

                    ( , , ) 0l
line

d L d g V I
d d

θ
ε λ ε
⎡ ⎤∂

= =⎢ ⎥∂⎣ ⎦
         

           0l

line l

d L g g V g I
d V I

θ
ε λ θ ε ε ε
⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂

= ⋅ + ⋅ + ⋅ =⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦
 

           2 2 2 0V Iline line line lL L V Lλ θ ε λ ε λ εθ lI∇ ⋅∇ +∇ ⋅∇ +∇ ⋅∇ =     (19) 
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Elements of the binding variables at upper limit 

                         ( ( ) / ) 0H
H

d L d g f Y f
d dε µ ε

⎡ ⎤∂
= =⎢ ⎥∂⎣ ⎦

         

           ( ) 0
( )

H

H H

d L g f Y g f
d f Y fε µ ε ε

⎡ ⎤∂ ∂ ∂ ∂ ∂
= ⋅ + ⋅ =⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦

 

                  2 2
( ) ( ) 0

H H Hf Y f HL f Y L fµ ε µ ε∇ ⋅∇ +∇ ⋅∇

2 2 2 2 2

2 2 2 2 2
*

2 2
*

2
*

2
*

2 2 2

2 2

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

p Q line

p Q line

G G G p G G

G Q G G

l line l l

p p p G

Q Q

V

T
V VV V V V V V

T
P P P P P

T
Q Q

T

Q

I I I

V P

V

L L L L L

L L L L LB

L L B

L B

L B

L L L

L

θθ θ θλ θλ θλ

θ λ λ λ

λ

λ

λ

λ θ λ λ

λ θ λ

∇ ∇ ∇ ∇ ∇

∇ ∇ ∇ ∇ ∇

∇ ∇

∇

∇

∇ ∇ ∇

∇ ∇ 2

2 2 2

*

*

*

*

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

Q G

line line line l

G G

G G

l l

Q

V I

V V

P P

Q Q

I I

L L

L L L
B

B
B

B

λ

λ θ λ λ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥∇
⎢ ⎥
⎢ ⎥∇ ∇ ∇⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦⎢ ⎥

=

=                2
( ) ( ) 0

H f Y HL f Y fµ ε ε∇ ⋅∇ −∇

                                         2
( ) ( )

H f Y HL f Y fµ ε∇ ⋅∇ = ∇ε        (20) 

Elements of the binding variables at lower limit 

                         ( ( ) / ) 0L
L

d L d g f Y f
d dε µ ε

⎡ ⎤∂
= =⎢ ⎥∂⎣ ⎦

         

           ( ) 0
( )

L

L L

d L g f Y g f
d f Y fε µ ε ε

⎡ ⎤∂ ∂ ∂ ∂ ∂
= ⋅ + ⋅ =⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦

 

                  2 2
( ) ( ) 0

L L Lf Y f LL f Y L fµ ε µ ε∇ ⋅∇ +∇ ⋅∇ =

                2
( ) ( ) 0

L f Y LL f Y fµ ε ε∇ ⋅∇ +∇ =

                                         2
( ) ( )

L f Y LL f Y fµ ε ε∇ = −∇

Mε ε∗⋅∇ =

∇ ⋅        (21) 

Equations (12) to (21) can be expressed in a matrix form 
as followed:  

            W Z                    (22) ( )

where is the matrix of the second order derivative of 
Lagrange function with respect to 

W
Z  from the OPF 

problem and is defined as: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

 

The element  in the W  matrix is a matrix of 
binding limits on voltages.  If the voltage is binding at its 
upper limit, the value of the element is 1.  If it is binding 
at the lower limit, the value is -1.  

*V VB

*G GP PB , and 

are similarly defined.  The other terms in equation 
(22) are: 

*G GQ QB

*l lI IB

       T T T T T T T
G G lineZ V P Q Iε ε ε ε ε ε ε Pθ λ∗ ⎡∇ = ∇ ∇ ∇ ∇ ∇ ∇⎢⎣

       

                                  T T T T
Q line H Lε ε ε ελ λ µ µ ⎤∇ ∇ ∇ ∇ ⎦           (23) 

          0 0  T T T T T T T
Y L L N Hi Ll iM P Q f fε ε ε ε

⎡ ⎤= −∇ −∇ ∇ −∇ ⎦⎣        (24) 

where 

Z ∗          vector of the optimal system operating point  
0Y           zero vector of state vector ( Y ) dimension   

LPε∇       vector of dimension N with element LiPε∇   for    
               { }1,2,...,i N∈    

LQε∇        vector of dimension N with element LiQε∇  for   
              { }1,2,...,i N  ∈

0Nl         zero vector of dimension lN  

Hifε∇      vector of upper binding variables dimension  

Lifε∇      vector of lower binding variables dimension 

Optimal system operating point will change after a 
capacitor bank is added. Capacitor bank installation at any 
bus is equivalent to reducing reactive power load at that 
bus.  Reactive power is therefore a parameter to be 
considered, denoted by ε . This method calculates the rate 
at which functions of the system operations change as a 
parameter ε  changes given that the optimality is 
maintained.  

From equations (22), (23) and (24), let ε  be reactive 
power load at any bus j , that is LjQε = , we have 

      W Z                              (25)                      QLj M∗⋅∇ =

The sensitivity of the optimal system operating point is  

   1
QLj Z W M∗ −∇ = ⋅                              (26) 

and 
        1 2 3 40 0 0 0   T T T T T T

Q LLjM Q⎡ ⎤= −∇ ⎦⎢⎣
 

                         0 0 0...0 1 0...0 0 0T T T T
Y N N Bl

⎡ ⎤= − ⎦⎣             (27) 
↑ bus j                                           

where 

0T
Y  zero vector of state vector ( ) dimension    Y

0T
N  zero vector of dimension N   

0T
Nl  zero vector of dimension lN   

0T
B          zero vector of binding variables dimension 

Since injecting reactive power into a system reduces 
total system losses, and thus reduces real power 
generation and total generation cost.  Therefore, the 
interested function for sensitivity analysis is the total 
generation cost at the optimal operating point, which is 
the objective function of the base case OPF.  The optimal 
total generation cost is expressed in terms of a 
parameter ε  as: 

         2* *

1
( ( )

NG

i i Gi i Gi
i

C P P ( ))α β ε γ ε
=

= + +∑                    (28) 

where ε  is the injected reactive power at any bus. 
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Therefore, the sensitivity analysis is done by taking 
the derivative of the total system generation cost with 
respect to ε . 

Bus 1 

Bus 5 Bus 4 Bus 3 
           * *

1
( ( ) 2 (

NG

i Gi Gi i Gi Gi
i

C P P P Pε ε ε ))β ε γ
=

∇ = ∇ + ∇∑ ε            (29) 

Injecting reactive power at bus j , by adding a 
capacitor bank, is equivalent to reducing reactive power 
load at that bus, then the parameter is LjQε = , and (29) 
becomes 

                      * *

1
( 2

NG

Q i Q Gi i Gi Q GiLj Lj Lj
i

C P Pβ γ
=

∇ = ∇ + ∇∑ )P

*P ⎤
⎦

Bus 2 
                                    (30) *

1
2

NG

Q Q Gi i i GiLj Lj
i

C P β γ
=

⎡∇ = ∇ +⎣∑

The sensitivity of the total generation cost with 
respect to the change in reactive power load, QLj C∇  in 

equation (30), is considered the incremental saving cost of 
capacitor installation at bus j , which can be obtained 
once the base case OPF is solved and ∇  is evaluated 

from equation (26).  

*
Q GiLj P

 
3. Case studies 

Bus 1 Bus 4 Bus 5 Bus 6 

Bus 9 Bus 2 Bus 8 Bus 7 

Bus 3 

The optimal location for capacitor bank is 
considered the bus that gives the largest savings in total 
generation cost when the capacitor is added.  Therefore, 
there are two methods to compute such savings: the 
differencing method and the sensitivity method.  The 
differencing method is achieved by comparing the 
objective functions of two solved OPF problems: the base 
case OPF and the OPF with 1 MVAr reactive load 
reduced at one load bus.  For the system with  load 
busses, the OPF must be solved  times.  On the 
other hand, the sensitivity method solves base case OPF 
once, and then the sensitivity analysis is applied as 
discussed above in order to determine the savings. 

N
1N +

In this study, the test systems are calculated by both 
differencing and sensitivity methods. The OPF program is 
written in MATLAB®. The results from two methods are 
compared.  Finally, the optimal capacitor placement can 
be considered. 

3.1 Case study 1 

The model of 5-bus test system modified from the 
14-bus IEEE test system is a simple power system with 
three generators connected at busses 1, 2 and 3 as shown 
in Fig. 1.  The incremental saving costs of the 5-bus 
system determined from the differencing and the 
sensitivity methods are shown in Table 1. 

From Table 1, incremental saving costs obtained 
from both methods are approximately the same.  They 
give the highest values at bus 4, hence it is the optimal 
location for capacitor installation for this system. 

Although the results from two methods are the same, the 
sensitivity analysis uses much less calculation effort. 

 

 

 

 

 

 
 

 

 

Fig. 1. The 5-bus test system 
 
 

Table 1. Incremental saving costs for 5-bus test system 

Incremental Saving Cost ($/MVAr-hr) 
Bus Number 

Differencing method Sensitivity method 
1 0 0 

2 6.5305 6.5306 

3 10.9381 10.9392 

4 16.4360 16.4421 

5 13.3827 13.3827 

 

3.2 Case study 2 

The system used in case study 2 is a 9-bus test 
system from Power System Engineering Research Center 
(PSERC) [14] of Cornell University. The system has three 
generators and nine transmission lines as shown in Fig. 2.  
The OPF results of the system using two methods 
discussed earlier are shown in Table 2. 

 

  
 
 
 
 
 
                     
 
 
 

 
 

Fig. 2. The 9-bus test system of PSERC 

The results of both methods give the same optimal 
location for capacitor installation with approximately 
same incremental saving costs, just like the 5-bus test 
system.  The optimal capacitor location for the 9-bus 
system is therefore bus 8 with 30.43 $/MVAr-hr savings. 
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Note that the incremental saving costs of buses 1, 2 
and 3 of the 9-bus system (and bus 1 of 5-bus system) are 
zeros since they are generator buses without loads. 
 

Table 2. Incremental saving costs for 9-bus test system 

Incremental Saving Cost ($/MVAr-hr) 
 Bus Number 

Differencing method Sensitivity method 
1 0 0 

2 0 0 

3 0 0 

4 22.0873 22.0952 

5 21.1112 21.1475 

6 11.5174 11.5162 

7 26.3012 26.3012 

8 30.4265 30.4271 

9 27.8610 27.3638 

4. Conclusions 
The sensitivity method for evaluating the value of 

capacitor placement is achieved by applying sensitivity 
analysis to the base case OPF.  OPF by Lagrange Newton 
method is employed in this paper since W matrix is 
needed to determine the change of the objective function 
with respect to the change of injected reactive power. The 
bus that yields the biggest change, in other words, the 
largest incremental saving cost, is considered the optimal 
location of the capacitor bank.  The proposed sensitivity 
method is tested on 5-bus and 9-bus systems.  The results 
are compared to the ones from the differencing method.  
Both methods give the same optimal location with 
approximately the same saving costs.  However, the 
sensitivity method requires much less computational work 
since only one OPF computation is needed. 
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