

POWER FLOW ANALYSIS ON AN FPGA-BASED VECTOR COMPUTER

Muhammad Z. Hasan1, Sotirios G. Ziavras1,2 and Tae-Gyu Chang2
1Electrical and Computer Engineering Department

New Jersey Institute of Technology, Newark, NJ 07102, U.S.A.
2School of Electrical and Electronics Engineering

Chung-Ang University, 156-756, Seoul, Korea

ABSTRACT
The solution to a set of linear equations given in the form
Ax = b, where A is an n×n sparse matrix and b is an n-
element vector, can be obtained with the W-matrix
method for power flow studies. The characteristics of this
method are explored here for sparse linear systems
present in such studies and an enhanced vector processor
is proposed to support them directly in hardware. The
effects of customized instructions, instruction chaining,
and matrix density are evaluated. The impact of multiple
pipelined functional units, multiple data buses, and vector
register size is analyzed as well. Our implementation of
the vector processor on an FPGA (Field-Programmable
Gate Array) is discussed and benchmark results are
presented.

KEY WORDS
Power flow, sparse matrix, vector computer, FPGA

1. Introduction

Many power flow problems need to solve a set of linear
equations [1]. A direct method can solve Ax = b by first
factorizing the sparse matrix A into the lower-diagonal L,
diagonal D, and upper-diagonal U components [2]. The
inverse factor (or W-matrix) method is often used to solve
Ax = b, where the inverses of L and U are computed in a
very efficient manner [2, 3]. This method is very
competitive in serial environments and offers the potential
for vector-based parallel implementations. In Fast
Decoupled Load Flow (FDLF) studies, a significant speed
up with vector processing was reported compared to
scalar processing [4, 5]. Thus, appropriate improvements
in vector hardware, such as pipelining, pre-fetching, and
vector chaining, have the potential to speed up
significantly the above solution process. FPGAs that
allow reconfiguration of hardware resources could be
used in realizing vector machines suitable for the W-
matrix method. Since the matrices used in power analysis
are very sparse [2, 3], further opportunities are present for
even better performance. Special techniques have been
reported in the literature to take advantage of the sparsity
in matrices [6, 4]. There is a clear demand for improved
hardware platforms to enhance the performance of the W-

matrix method. Current high-density FPGAs have the
potential to satisfy this demand [7].

In this paper, our major objective becomes to incorporate
special instructions to a vector processor in order to
support the implementation of the W-matrix method. The
proposed instructions and their FPGA implementation are
presented, and actual performance results are analyzed.
Matrix-vector multiplication is common in this problem.
One reported FPGA implementation of sparse matrix-
vector multiplication [8] lacks the generality of a
programmable processor. Our approach is more general,
involving a programmable vector processor to carry out
many other tasks in addition to sparse matrix-vector
multiplication. The effect on the performance of vector
chaining is investigated. As there is inherent data
parallelism in vector operations, the use of multiple
functional units and multiple data buses is also studied.
The effect of using a large vector register file is analyzed
as well. The performance of our vector computer is
measured for the 14-, 30-, 57-, 118- and 300-bus IEEE
test systems.

2. The W-matrix Method and Required
Vector Processing Support

Let A = L.D.U, L-1 = WL and U-1 = WU. Then, the
solution to the above problem can be obtained as x = WU.
D-1.WL.b [4, 2, 3]. The solution is carried out in a series of
matrix-vector multiplications: WL.b = z, D-1.z = y, and
WU.y = x. Each W-matrix can be partitioned to increase
sparsity [2]. Appropriate node ordering has been used to
minimize the number of non-zero elements in the W
matrix [2, 3]. An efficient way to count the number of
non-zero elements in a matrix would speed up the
ordering phase. It is als o imperative to support sorting by
magnitude in order to speed up the ordering phase. To
process only the non-zero elements, the capability of the
architecture to identify the non-zero elements and form a
vector would be meaningful. The capability to form a
vector with the column indices of non-zero elements is
also an important requirement. The W-matrix method
involves a series of sparse matrix - vector multiplications.
As the vector is formed exclusively from non-zero

492-060 96

corinna

elements belonging to different rows, the resulting vector
also contains elements for different rows of the result.
Multiplication result elements belonging to the same row
must be added together to find the appropriate row
element in the result. A design is needed to selectively
add elements of a vector. This also requires keeping a
record of non-zero elements on each row of the original
matrix. In many applications, the contribution of diagonal
elements is evaluated separately from the contribution of
off-diagonal elements. This can be carried out efficiently
if the diagonal elements are readily accessible to the
processor. So, a technique is needed to access only the
diagonal elements. Based on these arguments, we have
decided to add the instructions summarized in Table 1 to
the basic general-purpose vector architecture proposed in
[9]. They offer potential performance improvement when
implemented directly in hardware.

 In our case, the vector computer consists of a vector
processor with pipelined 32-bit FPUs, a memory
controller for pre -fetching, and several memory modules,
as shown in Fig. 1. It contains a program memory and
eight data memory modules. There are six vector registers
each having 16 elements of 32 bits. The vector
architecture with the instructions in Table 1 was modeled
in VHDL. Modelsim from Mentor Graphics was used to
represent the model and simulate the design.
Subsequently it was synthesized using Synplify-Pro from
Synplicity. Finally, it was mapped to a Xilinx Virtex II
FPGA using the Xilinx ‘Place and Route’ tool.

Table 1. Proposed vector operations to speed up the
W-matrix method

Operation Effect

Count the number of non-zero
elements in a matrix

Sort the rows based on the
above counts

Select a row based on the
minimum count

Fast ordering of rows for
more parallelism and
effective vector length
control

Add only certain elements of a
vector to certain other elements
of the same vector

Fast multiplication of a
sparse matrix with a vector

Access only the diagonal
elements
Create a vector from all non-
zero elements in a matrix
Create a vector from the
column indices of all non-zero
elements in a matrix
Create a vector with the
number of non-zero elements
on each row

Fast access of the elements

3. Test Strategy and Performance Evaluation

The tes t cases chosen for performance evaluation are
IEEE power systems . Their admittance-matrix
characteristics are summarized in Table 2. In this first

Controller

Scalar
Registers

Mask

Length

8-4-2-1

Clustered FP
ADDER

Parallel FP
MULTIPLIER

DEMUX

MUX

Memory

Controller

Vector
Registers Memory

Modules

 Figure 1. The vector accelerator

experiment, as a precursor to power flow calculations it is
required to calculate the bus currents using a matrix-
vector multiplication: I bus = Y bus * V bus, where Y bus is an
admittance matrix and V bus is a voltage vector [10]. The
host program loads the bus vector and the admittance
matrix values into the data memory of the vector
processor. It also loads a predetermined set of vector
instructions into its code memory. The vector processor
executes the code to produce the resulting current vector
and stores it in the data memory. The host program sets
the vector length (for load and store operations)
depending on the part of the matrix being executed.
Results are read back into the host for verification. The
timing is measured in processor clock cycles.

Table 2: Characteristics of IEEE bus systems
Bus System Non-zero Elements in

Y bus
Density

(%)
14-bus 54 27.551
30-bus 112 12.444
57-bus 217 6.678
118-bus 490 3.519
300-bus 1122 1.246

3.1 Performance of Sparse Techniques

To evaluate the sparse techniques, all the admittance
matrices in our experiments were first made sparse with
density 2-7%. For each sparse matrix, a vector containing
only the non-zero elements of the whole matrix is created.
A column index vector is used to load the appropriate
elements of the multiplier vector. Then, the multiplication
is carried out and subsequently the partial results are
added to form the elements of the final result. The cycles
needed for bus current calculations were determined
experimentally; actual results on the FPGA board are
shown in Table 3. At the application level (for bus current
calculations), it can be seen that the sparse handling
techniques can reduce the overall cycles by 20-25%.
Experiments were carried out to see the relationship
between the matrix density and the cycles needed. The
density was varied from 2 % to 7%, as shown in Figures
2-4. It can be seen from the figures that the execution

97

cycles vary almost linearly with the density of the matrix.
For the 30- and 57-bus systems, partial results are added
to form the final result. This overhead is significant for
low-density matrices. As a result, the curve is non-linear
at low densities. But for higher densities, the curve is
linear as the above overhead becomes insignificant.

Table 3: Effect of sparse instructions

Cycles Needed Test

System With standard

instructions

With sparsity

handling

instructions

Cycle

Savings

(in %)

14-bus 2110 1563 25.924

30-bus 9834 7550 23.225

57-bus 36872 29218 20.758

118-bus 155152 121664 21.583

300-bus 941824 737938 21.647

Effect of Density (14-bus system)

970

980

990

1000

1010

1020

0 2 4 6 8

Density (%)

C
yc

le
s

to
 E

xe
cu

te

Figure 2: The effect of matrix density for the 14-bus

system

Effect of Density (30-bus system)

4300

4400
4500

4600

4700

4800

0 2 4 6 8

Density (%)

C
yc

le
s

to
 E

xe
cu

te

Figure 3: The effect of matrix density for the 30-bus

system

3.2 Performance of Vector Chaining

The technique of forwarding the result of one vector
operation to another vector operation is known as vector
chaining. This technique offers a reduction in the cycles

Effect of Density (57-bus system)

17000

17500
18000

18500

19000

19500

0 2 4 6 8

Density (%)

C
yc

le
s

to
 E

xe
cu

te

Figure 4: The effect of matrix density for the 57-bus
system

required to fetch and decode an instruction chained to
another instruction. Several vector chains with two and
three stages were implemented and tested. Test results are
summarized in Table 4. It can be seen that by employing
vector chaining techniques we can save on overall cycles
by 27-31%.

Table 4: Overall effect of vector-chaining
Cycles Needed

Test
Systems

Without the
features

With the
features

Cycle

Savings
(in %)

14-bus 2110 1474 30.142
30-bus 9834 6734 31.523
57-bus 36872 26746 27.462

118-bus 155152 112540 27.464
300-bus 941824 681375 27.653

3.3 Performance of Multiple Functional Units and Data
Buses

As all the elements of vector operand registers are
simultaneously available, they are processed concurrently
by employing multiple functional units in parallel in an 8-
4-2-1 cluster. In these 4-stage clusters, each number
represents the number of functional units employed at that
stage. As ‘Load’ operations are more than multiplications,
the data bus between the vector processor and the
memory controller was broadened. As seen from Table 5,
the effect of multiple functional units and data buses is
favorable. However, the cycle savings fall for larger
systems as there are more partial results that need to be
loaded/stored and added.

Table 5: Combined effect of multiple FUs and DBs
 Cycles Needed

Test System With Single
FU, DB

With
Multiple
FUs, DBs

Cycle

Savings
(in %)

14-bus 1010 812 19.603
30-bus 4771 3607 24.397
57-bus 19088 14094 26.163

118-bus 78010 58470 25.048
300-bus 458338 349330 23.783

98

The overall speed up obtained with our enhanced
architecture is more than 2.5, as shown in Table 6.

Table 6: Overall Speed-up
 Cycles Needed

Test
System

With Standard
Architecture

With Enhanced
Architecture

Speed-up

14-bus 2110 812 2.598

30-bus 9834 3607 2.726

57-bus 36872 14094 2.616

118-bus 155152 58470 2.653
300-bus 941824 349330 2.696

4. Further Enhancements

Additional gain in performance could be achieved by
using larger vector registers, such as 32-element registers.
It reduces the load/store overheads and produces long
vectors utilizing the pipeline more efficiently. However, it
requires additional resources on the FPGA and currently
efforts are ongoing to accommodate such a machine
within one Virtex II FPGA. An estimate of cycle savings
arising out of the use of the 32-element machine is
presented in Table 7. As the admittance matrices are
symmetric, loading a row implies loading a column too. It
implies that the subsequent load lengths could be shorter
if we could save the necessary elements from previous
load operations. It could result in additional cycle savings.
Also, load request (prefetch), count non-zero elements,
and actual load operations are carried out sequentially for
every row. Thus, chaining them together implies cycle
savings for the whole process. Since the partitioned Wi is
actually partitioned Li (where i is the partition number)
with the signs of the off-diagonal elements reversed, an
instruction to produce Wi directly from Li could be
meaningful. These are in active consideration for
implementation.

Table 7: Effect of Larger Vector Registers (estimated

from code structure)
 Cycles Needed

Test System On 16-element
Registers

On 32-element
Registers

Cycle

Savings
(in %)

30-bus 3607 2645 26.670
57-bus 14094 10779 23.520

118-bus 58470 43430 25.722
300-bus 349330 272825 21.900

5. Conclusion

The objective was to provide hardware support to the W-
matrix method found in power flow studies. An FPGA -
based vector implementation for this method was
presented. It was shown experimentally that about 22% of
vector processor clock cycles could be saved by
employing our proposed instructions. Also, the cycles
needed to solve the current equations vary linearly with
the matrix density. Moreover, by chaining several vector
instructions it was possible to reduce the cycle

requirements by about 28%. More than 20% cycles can be
saved by employing multiple functional units with a wide
data bus between the vector processor and the memory
controller. An overall speed up of more than 2.5 was
achieved in our experiments.

6. Acknowledgements

This research was supported in part by the U.S. Dept. of
Energy under grant DE-FG02-03CH11171.

References

 [1] D.J. Tylavsky and A. Bose, Parallel Processing in
Power System Computation. IEEE Trans. Power Sys.,
Vol. 7, No. 2, May 1992.
[2] M.K. Enns, W.F. Tinney, and F.L. Alvarado, Sparse
Matrix Inverse Factors. IEEE Trans. Power Sys., Vol. 5,
No. 2, May 1990.
[3] F.L. Alvarado, D.C. Yu, and R. Betancourt,
Partitioned Sparse A-1 Method. IEEE Trans. Power Sys.,
Vol. 5, No. 2, May 1990.
[4] G.P. Granelli, M. Montagna, and G. L. Pasini, A W-
Matrix Based Fast Decoupled Load Flow for Contingency
Studies on Vector Computers. IEEE Trans. Power Sys.,
Vol. 8, No. 3, August 1993.
[5] A. Gomez and R. Betancourt, Implementation of the
Fast Decoupled Load Flow on a Vector Computer. IEEE
Trans. Power Sys., Vol. 5, No. 3, Aug. 1990.
[6] H.S. Huang and C.N. Lu, Efficient Storage Scheme
and Algorithms for W-Matrix Vector Multiplication on
Vector Computers. IEEE Trans. Power Sys., Vol. 9, No.
2, May 1994.
[7] X. Wang and S.G. Ziavras, Parallel LU Factorization
of Sparse Matrices on FPGA - Based Configurable
Computing Engines. Concur. Comput., March 2004,
pp.319-343.
[8] H. ElGindy and Y.-L.Shue, On Sparse Matrix Vector
Multiplication with FPGA Based System. 11th Ann.l IEEE
Symp. Field Prog. Custom Comp. Mach, April 2002.
[9] J.L. Hennessy and D.A. Patterson, Computer
Architecture: A Quantitative Approach (Second Edition).
Morgan Kauffman Pub. Inc., 1996.
[10] J. Duncan Glover and M. Sarma, Power System
Analysis and Design: with Personal Computer
Applications. PWS Publishers, Boston, 1987.

99

