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ABSTRACT 
The solution to a set of linear equations given in the form 
Ax = b, where A is an n×n sparse matrix and b is an n-
element vector, can be obtained with the W-matrix 
method for power flow studies. The characteristics of this 
method are explored here for sparse linear systems 
present in such studies and an enhanced vector processor 
is proposed to support them directly in hardware. The 
effects of customized instructions, instruction chaining, 
and matrix density are evaluated. The impact of multiple 
pipelined functional units, multiple data buses, and vector 
register size is analyzed as well. Our implementation of 
the vector processor on an FPGA (Field-Programmable 
Gate Array) is discussed and benchmark results are 
presented. 
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1.  Introduction 
 
Many power flow problems need to solve a set of linear 
equations [1]. A direct method can solve Ax = b by first 
factorizing the sparse matrix A into the lower-diagonal L, 
diagonal D, and upper-diagonal U components [2]. The 
inverse factor (or W-matrix) method is often used to solve 
Ax = b, where the inverses of L and U are computed in a 
very efficient manner [2, 3]. This method is very 
competitive in serial environments and offers the potential 
for vector-based parallel implementations. In Fast 
Decoupled Load Flow (FDLF) studies, a significant speed 
up with vector processing was reported compared to 
scalar processing [4, 5]. Thus, appropriate improvements 
in vector hardware, such as pipelining, pre-fetching, and 
vector chaining, have the potential to speed up 
significantly the above solution process. FPGAs that 
allow reconfiguration of hardware resources could be 
used in realizing vector machines suitable for the W-
matrix method. Since the matrices used in power analysis 
are very sparse [2, 3], further opportunities are present for 
even better performance. Special techniques have been 
reported in the literature to take advantage of the sparsity 
in matrices [6, 4]. There is a clear demand for improved 
hardware platforms to enhance the performance of the W- 

matrix method. Current high-density FPGAs have the 
potential to satisfy this demand [7]. 
  
In this paper, our major objective becomes to incorporate 
special instructions to a vector processor in order to 
support the implementation of the W-matrix method. The 
proposed instructions and their FPGA implementation are 
presented, and actual performance results are analyzed. 
Matrix-vector multiplication is common in this problem. 
One reported FPGA implementation of sparse matrix-
vector multiplication [8] lacks the generality of a 
programmable processor. Our approach is more general, 
involving a programmable vector processor to carry out 
many other tasks in addition to sparse matrix-vector 
multiplication. The effect on the performance of vector 
chaining is investigated. As there is inherent data 
parallelism in vector operations, the use of multiple 
functional units and multiple data buses is also studied. 
The effect of using a large vector register file is analyzed 
as well. The performance of our vector computer is 
measured for the 14-, 30-, 57-, 118- and 300-bus IEEE 
test systems.  
 
 
2. The W-matrix Method and Required 
Vector Processing Support  
 
Let A = L.D.U, L-1 = WL and U-1 = WU. Then, the 
solution to the above problem can be obtained as x = WU. 
D-1.WL.b [4, 2, 3]. The solution is carried out in a series of 
matrix-vector multiplications:  WL.b = z, D-1.z = y, and 
WU.y = x. Each W-matrix can be partitioned to increase 
sparsity [2]. Appropriate node ordering has been used to 
minimize the number of non-zero elements in the W 
matrix [2, 3]. An efficient way to count the number of 
non-zero elements in a matrix would speed up the 
ordering phase. It is als o imperative to support sorting by 
magnitude in order to speed up the ordering phase. To 
process only the non-zero elements, the capability of the 
architecture to identify the non-zero elements and form a 
vector would be meaningful. The capability to form a 
vector with the column indices of non-zero elements is 
also an important requirement. The W-matrix method 
involves a series of sparse matrix - vector multiplications. 
As the vector is formed exclusively from non-zero 
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elements belonging to different rows, the resulting vector 
also contains elements for different rows of the result. 
Multiplication result elements belonging to the same row 
must be added together to find the appropriate row 
element in the result. A design is needed to selectively 
add elements of a vector. This also requires keeping a 
record of non-zero elements on each row of the original 
matrix. In many applications, the contribution of diagonal 
elements is evaluated separately from the contribution of 
off-diagonal elements. This can be carried out efficiently 
if the diagonal elements are readily accessible to the 
processor. So, a technique is needed to access only the 
diagonal elements. Based on these arguments, we have 
decided to add the instructions summarized in Table 1 to 
the basic general-purpose vector architecture proposed in 
[9]. They offer potential performance improvement when 
implemented directly in hardware. 
 
 In our case, the vector computer consists of a vector 
processor with pipelined 32-bit FPUs, a memory 
controller for pre -fetching, and several memory modules, 
as shown in Fig. 1. It contains a program memory and 
eight data memory modules. There are six vector registers 
each having 16 elements of 32 bits. The vector 
architecture with the instructions in Table 1 was modeled 
in VHDL. Modelsim from Mentor Graphics was used to 
represent the model and simulate the design. 
Subsequently it was synthesized using Synplify-Pro from 
Synplicity. Finally, it was mapped to a Xilinx Virtex II 
FPGA using the Xilinx ‘Place and Route’ tool. 
 

Table 1. Proposed vector operations to speed up the 
W-matrix method 

Operation Effect 
 
Count the number of non-zero 
elements in a matrix 
 
Sort the rows based on the 
above counts 
 
Select a row based on the 
minimum count 

 
 
 
Fast ordering of rows for 
more parallelism and 
effective vector length 
control 

Add only certain elements of a 
vector  to certain other elements 
of the same vector 

 
Fast multiplication of a 
sparse matrix with a vector 

Access only the diagonal 
elements 
Create a vector from all non-
zero elements in a matrix  
Create a vector from the 
column indices of all non-zero 
elements in a matrix 
Create a vector with the 
number of non-zero elements 
on each row 
 

 
 
 
 
Fast access of the elements 
 
  
 

 
3. Test Strategy and Performance Evaluation 
 
The tes t cases chosen for performance evaluation are 
IEEE power systems . Their admittance-matrix 
characteristics  are  summarized  in  Table 2.  In  this   first 
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 Figure 1. The vector accelerator 
 
experiment, as a precursor to power flow calculations it is 
required to calculate the bus currents using a matrix-
vector multiplication: I bus = Y bus * V bus, where Y bus is an 
admittance matrix and V bus is a voltage vector [10]. The 
host program loads the bus vector and the admittance 
matrix values into the data memory of the vector 
processor. It also loads a predetermined set of vector 
instructions into its code memory. The vector processor 
executes the code to produce the resulting current vector 
and stores it in the data memory. The host program sets 
the vector length (for load and store operations) 
depending on the part of the matrix being executed. 
Results are read back into the host for verification. The 
timing is measured in processor clock cycles. 
 

Table 2: Characteristics of IEEE bus systems  
Bus System Non-zero Elements in 

Y bus 
Density 

(%) 
14-bus 54 27.551 
30-bus 112 12.444 
57-bus 217 6.678 
118-bus 490 3.519 
300-bus 1122 1.246 

 
3.1 Performance of Sparse Techniques 

To evaluate the sparse techniques, all the admittance 
matrices in our experiments were first made sparse with 
density 2-7%. For each sparse matrix, a vector containing 
only the non-zero elements of the whole matrix is created. 
A column index vector is used to load the appropriate 
elements of the multiplier vector. Then, the multiplication 
is carried out and subsequently the partial results are 
added to form the elements of the final result. The cycles 
needed for bus current calculations were determined 
experimentally; actual results on the FPGA board are 
shown in Table 3. At the application level (for bus current 
calculations), it can be seen that the sparse handling 
techniques can reduce the overall cycles by 20-25%. 
Experiments were carried out to see the relationship 
between the matrix density and the cycles needed. The 
density was varied from 2 % to 7%, as shown in Figures 
2-4.  It can be seen from the figures that the execution 
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cycles vary almost linearly with the density of the matrix. 
For the 30- and 57-bus systems, partial results are added 
to form the final result. This overhead is significant for 
low-density matrices. As a result, the curve is non-linear 
at low densities. But for higher densities, the curve is 
linear as the above overhead becomes insignificant.  
 

Table 3: Effect of sparse instructions 

Cycles Needed Test 

System With standard 

instructions 

With sparsity 

handling 

instructions  

Cycle 

Savings 

( in % ) 

14-bus 2110 1563 25.924 

30-bus 9834 7550 23.225 

57-bus 36872 29218 20.758 

118-bus 155152 121664 21.583 

300-bus 941824 737938 21.647 
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Figure 2: The effect of matrix density for the 14-bus 

system 

Effect of Density (30-bus system)
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Figure 3: The effect of matrix density for the 30-bus 

system 
 
3.2 Performance of Vector Chaining  
 
The technique of forwarding the result of one vector 
operation to another vector operation is known as vector 
chaining. This    technique  offers a reduction in the cycles  
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Figure 4: The effect of matrix density for the 57-bus 
system 

 
required to fetch and decode an instruction chained to 
another instruction. Several vector chains with two and 
three stages were implemented and tested. Test results are 
summarized in Table 4. It can be seen that by employing 
vector chaining techniques we can save on overall cycles 
by 27-31%. 
 

Table 4:  Overall effect of vector-chaining 
Cycles Needed  

Test 
Systems 

Without the 
features 

With the 
features 

 
Cycle 

Savings 
( in % ) 

14-bus 2110 1474 30.142 
30-bus 9834 6734 31.523 
57-bus 36872 26746 27.462 

118-bus 155152 112540 27.464 
300-bus 941824 681375 27.653 

 
3.3 Performance of Multiple Functional Units and Data 
Buses 
 
As all the elements of vector operand registers are 
simultaneously available, they are processed concurrently 
by employing multiple functional units in parallel in an 8-
4-2-1 cluster. In these 4-stage clusters, each number 
represents the number of functional units employed at that 
stage. As ‘Load’ operations are more than multiplications, 
the data bus between the vector processor and the 
memory controller was broadened. As seen from Table 5, 
the effect of multiple functional units and data buses is 
favorable. However, the cycle savings fall for larger 
systems as there are more partial results that need to be 
loaded/stored and added. 
 

Table 5: Combined effect of multiple FUs and DBs 
 Cycles Needed  

Test System With Single 
FU, DB  

With  
Multiple 
FUs, DBs 

 
Cycle 

Savings 
( in % ) 

14-bus 1010 812 19.603 
30-bus 4771 3607 24.397 
57-bus 19088 14094 26.163 

118-bus 78010 58470 25.048 
300-bus 458338 349330 23.783 
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The overall speed up obtained with our enhanced 
architecture is more than 2.5, as shown in Table 6. 
 

Table 6: Overall Speed-up 
 Cycles Needed  

Test 
System 

With Standard 
Architecture  

With Enhanced 
Architecture  

 
Speed-up 

14-bus 2110 812 2.598 

30-bus 9834 3607 2.726 

57-bus 36872 14094 2.616 

118-bus 155152 58470 2.653 
300-bus 941824 349330 2.696 

 
4. Further Enhancements 
 
Additional gain in performance could be achieved by 
using larger vector registers, such as 32-element registers. 
It reduces the load/store overheads and produces long 
vectors utilizing the pipeline more efficiently. However, it 
requires additional resources on the FPGA and currently 
efforts are ongoing to accommodate such a machine 
within one Virtex II FPGA. An estimate of cycle savings 
arising out of the use of the 32-element machine is 
presented in Table 7. As the admittance matrices are 
symmetric, loading a row implies loading a column too. It 
implies that the subsequent load lengths could be shorter 
if we could save the necessary elements from previous 
load operations. It could result in additional cycle savings. 
Also, load request (prefetch), count non-zero elements, 
and actual load operations are carried out sequentially for 
every row. Thus, chaining them together implies cycle 
savings for the whole process. Since the partitioned Wi is 
actually partitioned Li (where i is the partition number) 
with the signs of the off-diagonal elements reversed, an 
instruction to produce Wi directly from Li could be 
meaningful. These are in active consideration for 
implementation. 
 
Table 7: Effect of Larger Vector Registers (estimated 

from code structure) 
 Cycles Needed  

Test System On 16-element 
Registers  

On 32-element 
Registers  

 
Cycle 

Savings 
( in % ) 

30-bus 3607 2645 26.670 
57-bus 14094 10779 23.520 

118-bus 58470 43430 25.722 
300-bus 349330 272825 21.900 

 
5. Conclusion 
 
The objective was to provide hardware support to the W-
matrix method found in power flow studies. An FPGA -
based vector implementation for this method was 
presented. It was shown experimentally that about 22% of 
vector processor clock cycles could be saved by 
employing our proposed instructions. Also, the cycles 
needed to solve the current equations vary linearly with 
the matrix density. Moreover, by chaining several vector 
instructions it was possible to reduce the cycle 

requirements by about 28%. More than 20% cycles can be 
saved by employing multiple functional units with a wide 
data bus between the vector processor and the memory 
controller. An overall speed up of more than 2.5 was 
achieved in our experiments. 
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