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ABSTRACT: A lot of energy can be saved by efficient 
reconfiguration of radial distribution systems (RDS) under 
network constraints. In this paper, a novel genetic 
algorithm based approach has been adopted for network 
reconfiguration. The attractive features of the proposed 
approach are: an improved chromosome coding and an 
efficient convergence characteristics attributed to fuzzy 
controlled mutation. A systematic and comparative study 
of different genetic algorithms and simulation results has 
been presented and discussed. 
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1. Introduction 
 

RDS reconfiguration alters feeder topology by 
changing the status of sectionalizing (normally closed) 
and tie line (normally open) switches. Network 
reconfiguration is necessary for loss minimization, load 
transfer from one feeder to other, improving voltage 
profile and stability.  Reconfiguration is obtained by 
closing a tie-switch and opening a sectionalizing switch to 
retain the radial topology. The reconfiguration is a 
complicated combinatorial, non-differentiable and 
constrained optimization problem owing to the enormous 
number of switching combinations in distribution 
systems. Heuristics and expert’s experience based 
approaches can only obtain sub-optimal solutions.  Owing 
to the discontinuous and discrete nature of the problem, 
classical techniques are rendered unsuitable and the use of 
global search techniques is warranted. 
 

Evolutionary algorithms, i.e., genetic algorithm (GA) 
and evolutionary programming (EP) have been proposed 
for this task [1-4]. The GA is very much suitable for 
multi-objective optimization. The GA uses a fitness 
function to guide the search [5],[6].  In [1], a simple 
chromosome structure represents the switch status in the 
arcs of the RDS. Thus, the length of chromosome grows 
with the number of switches. Moreover, there is high 
probability of crossover operator disrupting the radial 

nature of the system with a burden to detect and eliminate 
invalid chromosomes. Song et. al. [2] have used EP by 
competition and mutation (by a controller) only with an 
involved data structure. The influence of crossover 
operator has not been investigated. Further, it becomes 
necessary to check that the mutation probability lies 
within the range and it requires special attention, i.e., 
mutation must be carried out in pairs for preserving the 
radial property of the RDS. The algorithm proposed in [3] 
also requires constant examination of the radial structure 
of the chromosome consuming much time. In [4], a 
simple mutation controller is used (it is necessary to check 
that the mutation probability remains within range) and 
this may not be the best strategy to diversify population 
for large-scale RDS. In this work, for efficient global 
search, a fuzzy mutation controller with two inputs, i.e., 
standard deviation of the population fitness distribution 
and incremental change in average fitness of population, 
has been designed. The algorithm has been tested on a 
standard distribution system.  
 
2. Network Reconfiguration Problem 
Formulation 
 

The RDS reconfiguration requires determination of a 
set of branches, possibly one from each loop, to be 
switched out such that the resulting RDS incurs minimal 
real loss under network constraints while maintaining the 
radial nature of the network with all loads being 
energized. The mathematical statements of optimization 
and load flow algorithm are discussed below. 

 
2.1 Real Power Loss Minimization 
 

The minimization of real power loss, through 
reconfiguration, can be stated as: 
Minimize kW losses 
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where Vj = voltage of node j, Im = current in branch m, N 
= number of buses (nodes), Nb = number of branches, and 

mR = branch resistance.  
 
2.2 Voltage Profile Improvement 
 

For voltage profile improvement, the following 
Voltage Deviation Index (VDI) is minimized. 
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voltage =1.0 p.u                       (3) 
The safe lower limit of the bus voltage is 0.9 p.u.. The 
VDI is a positive quantity under all conditions. It also 
caters to the situation of the tap-changing 
transformers/regulators correcting the voltage of the 
busses closer to the substation and the bus voltage being 
more than unity.  
 
2.3 Minimization of Current Ratio Index 

To minimize branch current violation, the following 
current ratio index (CRI) is minimized. 
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3. Fuzzy Controlled Genetic Algorithms for 
Reconfiguration 
 

The design of the proposed fuzzy controlled genetic 
algorithm (FCGA) for RDS reconfiguration to minimize 
losses under network constraints is described.  The salient 
features of the basic genetic algorithm (BGA) are 
discussed first followed by the specific features of FCGA. 
 

3.1 Features of Basic Genetic Algorithm  
BGA is an efficient stochastic search technique in 

which a group of candidate solutions evolves, through 
Darwinian principle of natural evolution [5,6], to an 
optimal solution via the application of genetic operators. 
The salient features of BGA are [5,6,8]: 

 
• A set of genes, which corresponds to a chromosome, 

is referred to as a string in BGA. 
 
• BGA starts with a random population of strings and 

generates successive populations using basic genetic 
operators, i.e., reproduction, crossover, and mutation. 

During reproduction, strings are copied to a “mating pool” 
using some strategy. From this pool, parents are chosen to 
mate (crossover) for producing children for the next 

generation. There are two popular strategies, i.e., roulette 
wheel selection and tournament selection. There are two 
popular strategies, i.e., roulette wheel selection and 
tournament selection.  
 

(a) Roulette Wheel Selection: In this scheme, 
the individual strings are copied into the mating pool 
according to their fitness based on ‘roulette wheel 
selection’ scheme, i.e., each string occupies an area 
of the wheel that is equal to the string’s share of total 
fitness. If there are Np individuals in the population, 
each having fitness value pi N,,,i,f L21= . Then, 
the i-th individual occupies an area proportional 

to ∑
=

pN

t
ti ff

1
. Pairs of strings are picked up 

randomly from the roulette wheel and each pair 
undergoes crossover to produce two new strings. 
There are many types of crossovers, i.e., single point 
crossover, two-point crossover etc. [37]. It is the most 
dominant operator in the evolution and its probability 
( cp ) is high. 
 
(b) Tournament Selection: The binary 
tournament is the simplest where the fitter of the two 
randomly chosen strings (with replacement) becomes 
the first parent. Similarly, the second parent is 
chosen. Then, the two parents go through crossover 
to generate children. Mutation is the occasional, with 
a low probability ( mp ), operator used for random 
alteration of string settings. It diversifies the search 
and prevents premature convergence. For binary 
coding scheme, mutation changes a bit from 1 to 0 
and vice versa. The genetic operations are repeated 
until specified maximum generations are reached. 
Generally, the population size, crossover and 
mutation probability are chosen empirically. 

 
3.2 Chromosome Coding and Decoding: 
 

In FCGA, the chromosome consists of n binary 
substrings (n = number of tie lines). Each tie line 
represents one coded substring, i.e., whether the tie line is 
closed/open and if it is closed, which branch in the created 
loop is opened to maintain the radial nature. The 
chromosome structure is shown in Fig. 2. The leftmost bit 
of each substring is the status of the tie line (1 ≡ closed, 0 
≡ open). It is followed by some bits to determine the 
branch selected for opening and these bits have 
significance if status bit is 1. These bits are decoded to 
find the branch number by a wrapping-up technique.  
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Fig. 2 Chromosome structure for 
          network reconfiguration  

    
 
 
 In FCGA, the decoding procedure scans the 

chromosome from left to right. If same branch is 
encountered more than once, the later choice is ignored by 
choosing another branch from the loop forming branch set 
of that tie line and corresponding binary code is inserted 
to preserve the radial nature. The initial population is 
randomly chosen with bits being either1 or 0. 
 
3.3 Fitness Function, Reproduction, 

Crossover and Elitism:  
 

The fitness function should meet the reconfiguration 
objectives, i.e., minimization of lossP , minimization of 
VDI, and minimization of CRI. Thus, the overall fitness 
function f is defined as: 

( ) ( ) ( )CRIVDIP
f

loss ×+×+×+
=

3211
1

ηηη
 (5)                            

   
The fitness stays in the range of 0 and 1. 1η  , 2η  and 3η  
are chosen constants based on relative weights of the 
objective (penalty) terms and the FCGA tries to maximize 
the fitness function. Reproduction and crossover are 
implemented exactly like BGA. Both roulette wheel and 
tournament selections are tested with two-point crossover.  
 
3.4 Fuzzy Controlled Mutation: 
 

The choice of mp is critical for good convergence 
characteristics. Here, a fuzzy system approach is used to 
compute the mutation probability. The population 
diversity can be assessed by the standard deviation (σ) of 
the population fitness distribution and the convergence 
trend can be evaluated from the incremental change in the 
average fitness ( avf ) of the population where avf is 
defined as: 

         ∑=
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A fuzzy rule base (Table 1) with two inputs (σ and avf∆ ) 
and one output ( mp ) is designed for this purpose. The 
various fuzzy sets are: LN (Large Negative), SN (Small 
Negative), ZR (near Zero), SP (Small Positive), and LP 

(Large Positive), VS (Very Small), S (Small), M 
(Medium), L (Large), VL (Very Large).  
 

 
 
 
 
 

 
 
 

 
                  
 
 
 
 

        Fig. 3.  Membership function for avf∆  
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 

 
 Fig.4. Membership functions for standard deviation  

 
4. Test Results 
 

The proposed FCGA has been tested on a practical 
33-bus system [4]  The influence of different optimization 
criterion on the reconfigured network is studied 
systematically. The fitness function is as in Eqn (5). The 
central values of fuzzy singletons for the output space of 
the fuzzy system are chosen as 0.11, 0.12, 0.13, 0.14 and 
0.15, respectively, for the different fuzzy sets, i.e., VS, S, 
M, L, VL. The crossover probability and population size 
are chosen as 0.9 and 30, respectively. 

  
4.1 Example 1: 33-Bus System 

The network reconfiguration objectives are real loss, 
VDI and CRI minimization. To visualize the influence of 
each objective, three case studies have been performed.  
 
4.1.1 Case Study I: 

In this case, the fitness function considers only real 
loss. Thus, simulation tests are done with ,101 =η 2η = 0 
in Eqn. (5). For two random runs, a comparison of the 

Status 

Substring n Substring 1 Substring 2 

Branch 
Selection 

LN SN ZR SP LP 

0 0.25 0.5   - 0.25 -0.5 

µ 

avf∆

1.0 

µ 

0 σ

VS S M L 
VL

1.0 

0.0 0.06 0.12 0.15 0.09 
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evolution of maximum fitness of population between 
roulette-wheel and tournament selection is shown in Fig. 
5 where the fixed (complete) fuzzy rule base is used for 
mutation control. The results show improvement in the 
utmost performance parameter (Table 2), i.e., real loss of 
139.36 kW compared to the base network’s loss of 202.67 
kW). Further, VDI and CRI of the reconfigured network 
have also improved. Performances of both the selection 
schemes are close to each other. The tournament selection 
is simple to implement. The roulette-wheel selection may 
sometimes be affected by stochastic error.  Thus, for the 
subsequent studies, the tournament selection is used. 

 
Fig. 5 Performance with different selection schemes; 

Fixed (complete) fuzzy rule base is used. 
 
As discussed before, the evaluation of all the rules in 

the rule base may not be efficient. Thus, as described, the 
evolution of the fuzzy rule base is performed with the 
auxiliary GA (ε = 0.01). Fig. 6 shows a comparison of 
performances.  The evolved rule base after 200 
generations in a random run is shown in Table 2. Here, a 
simple approach finds the optimal set of rules (out of 
Table 1) at every generation. The membership function 
definitions are fixed. For this objective, all the 25 rules in 
Table 1 are coded by a binary string of 25 bits, i.e., 
presence (absence) of a rule is coded by 1 (0). For rule 
base evolution, a population of candidate solutions is used 
with BGA, in parallel with the evolution for the network 
reconfiguration using FCGA, based on a trial and error 
approach. It is observed that although performances are 
close to each other, the mutation control using 
evolutionary rule base has a slight edge over the fixed rule 
base for most runs. In this study, the same best network is 
obtained as before (Table 2) 

 
Fig. 6 Performance comparison between fixed and 

evolutionary rule base mutation controller 

The processing (CPU) times (for 100 generations) 
with different schemes are shown in Table 1.  The used 
computer has a Pentium 4 processor (speed =1.6 GHz). It 
is seen that the tournament selection with evolutionary 
rule base has an edge over other schemes. Thus, this 
strategy is used for rest of the studies. It is emphasized 
that the actual time taken to get the optimal reconfigured 
network is much less since this solution is usually 
obtained within 30 generations. 

 
 

SCHEME CPU 

Time 

Roulette-Wheel Selection + Fixed 

(Complete) Rule Base Mutation 

3.30 sec. 

Tournament Selection + Fixed 

(Complete) Rule Base Mutation 

3.21 sec. 

Tournament Selection + Evolutionary 

Rule Base Mutation 

3.19 sec. 

Table 1.  Average CPU time for 100 generations with 
different schemes (33-bus RDS) 

 

4.1.2 Case Study II: 
Here, the real loss and VDI are minimized. The 

coefficients are: ,101 =η 2η =1. The strategy is 
tournament selection with evolutionary rule base 
mutation. The performance measures are reported in 
Table 2. As a consequence of VDI minimization, VDI of 
the reconfigured network is now less than the VDI of the 
network obtained. However, the real power loss is slightly 
more compared to Case I because, with two objectives to 
be minimized, FCGA tries to find the optimally best 
solution. 

 
 

The reconfiguration by FCGA (Table 2) results in 
efficient networks compared to base case. The comparison 
reveals that real loss is the least in Case I, but other 
parameters have improved in Case II These pictorial 
comparisons offer better insights for the power system 
engineer. Finally, it is also necessary compare the 
performance of FCGA with those of some well-
established forms of GA. For this purpose, two algorithms 
are chosen. They are: (i) Elitist GA [13], and (ii) CHC 
search algorithm [14]. A brief description of both 
algorithms follows.  In elitist (recombination) GA, there 
are no separate selection and recombination phases. 
Crossover is applied to every mating pair. Elitist 
recombination works at the family level, i.e., every mating 
pair creates two offspring and the best two of the parents 
and offspring go to the next generation. Thus, parents are 
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replaced by their own children when the children have 
higher fitness. 

 
The CHC stands for Cross-generational elitist 

selection, Heterogeneous recombination (by incest 
prevention), and Cataclysmic mutation. It is a 
generational genetic search algorithm with truncation 
selection mechanism. The parents are randomly paired; 
but only those string pairs differing from each other by 
some number of bits (called as mating threshold) are 
allowed to reproduce. This is the heterogeneous 
recombination. The initial mating threshold is set to one-
fourth of the string length. When no offspring are inserted 
into new population, the mating threshold is decremented 
by 1. The crossover in CHC performs uniform crossover 
and randomly swaps exactly half of the differing bits 
between the parents.  After recombination, the next 
generation population is created by taking the best 
individuals (number = population size) from the parent 
and offspring population. This is the cross-generational 
elitist selection. No mutation is applied during the 
recombination. When no offspring can be inserted into the 
population of succeeding generation and mating threshold 
is equal to 0, the CHC introduces fresh diversity into the 
population via a restart mechanism known as cataclysmic 
mutation. This mutation uses the best individual in the 
population as a template to re-initialize the population. 
The new population includes one copy of the template 
string and the rest of the population is generated by 
mutating some percentage of bits (e.g. 35% to 40%) in the 
template string. 

 
A comparative study of performances for random 

runs is shown in Fig. 7 for Case III.  For speeding up the 
convergence process in CHC, a modification is done and 
it is in the way the mating threshold is decremented. In 
addition to the basic CHC, the mating threshold is also 
decremented by observing the trend of the average fitness 
of population, i.e., in non-overlapping windows of 10 
generations each, if the average fitness is not in increasing 
trend for at least 5 generations, the mating threshold is 
decremented.  

 
Fig. 7 also establishes the superiority of FCGA. It is 

remarked that, in FCGA, the best possible reconfigured 
network is always obtained within 30 generations and the 
CPU time required (on Pentium 4 processor) is 
approximately 1.0 sec. This definitely makes the proposed 
algorithm a potential candidate for real-time applications. 

 
 
 
 

 
 
 
Fig 7. Performance comparisons of FCGA, CHC Search 
and Elitist GA (for 33-bus RDS) 
 
5. Conclusions 
 

A novel fuzzy controlled genetic algorithm has been 
proposed in this paper for distribution network 
reconfiguration minimizing network losses subject to 
other constraints for overall power quality improvement. 
A new coding scheme for the chromosome representation 
of the network has been proposed. Further, a fuzzy logic 
based mutation controller is proposed for an effective 
search of the solution space compared to fixed rate 
mutation operator in BGA.  The features of several multi-
objective evolutionary algorithms  (MOEA) [15], i.e., 
non-elitist MOEA, Elitist MOEA and constrained MOEA 
etc. should be investigated along with the proposed 
FCGA. A study in this direction is presently being 
pursued.  
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Cases Real Loss 

(kW) 

VDI CRI Vmin (p.u.) Best Switching Options    
Branch in-out 

Case I 139.36 0.03467 0.04247 0.93782 33-7, 34-14, 35-9, 36-32 

Case II 139.782 0.032507 0.03757 0.94129 33-7, 34-14, 35-9, 36-32,37-28 

Case III 139.782 0.032507 0.03757 0.94129 33-7, 34-14, 35-9, 36-32,37-28 

Base Case  202.67 0.051544 0.05059 0.91308 ----------------- 

Table 2: Test Results for 33-bus RDS reconfiguration using FCGA  
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