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ABSTRACT This paper presents a dynamic model of 
Polymer Electrolyte Membrane Fuel Cells (PEM FCs), and 
constructs a nonlinear control strategy for PEM FCs by 
using the exact linearization approach. By introducing 
additional outputs, the original multiple-input single-output 
(MISO) nonlinear model of PEM FC is transformed into a 
multiple-input multiple-output (MIMO) system so that the 
exact linearization approach can be directly utilized.  The 
reformer is avoided in the control design for economical 
objective. Simulation results show that PEM fuel cells with 
nonlinear control have better transient and steady-state 
performances than linear controls.  

In this paper the nonlinear dynamic model for PEMFCs 
proposed in [13] is directly utilized to design a new control 
strategy for fuel cells without the use of reformer for the 
economical consideration. The exact linearization control 
approach transforms the original nonlinear dynamic model 
into a linear model by a diffeomorphism mapping, and then 
transforms back to the original nonlinear state-space the 
control law obtained from the exactly transformed linear 
system by linear optimal control approaches. The control law 
obtained from the exact linearization without the reformer is 
simpler than the one with reformer, and is expected to be 
more robust in the presence of large disturbances in a big 
range.  

KEY WORDS: Polymer Electrolyte Membrane Fuel Cells, 
nonlinear dynamic model, exact linearization.  

II. PEM FUEL CELL DYNAMIC MODEL 

The following assumptions are applied to construct the 
simplified dynamic model for PEM FCs [3].  I. INTRODUCTION · The amount of Nitrogen in the cathode is constant in the 
FC model’s state variable equation. Fuel cells are electrochemical devices that convert 

chemical energy to electricity and thermal energy. At the 
beginning of 21st century, fuel cells, as a renewable energy 
source, is considered as one of the most promising 
alternative sources of electric power because they appeal to 
environment with nonpolluting energy generation and offer a 
wide size range application with high efficiency, such as 
from portable electronics to utility power plants. In addition 
to the fuel cell stack itself, a fuel cell system includes a fuel 
processor unit or reformer and subsystems to manage air, 
water, thermal energy and power. A PEM FCs produce water 
as by product and  operating at low temperature and having 
many benefits, such as safe operational modes, lower 
maintenance costs due to less moving parts, fast start up, and 
activate a wide scope of applications in power systems 
[1,2,3]. PEM FCs are normally installed in distribution 
systems close to the loads. They often experience large and 
frequent disturbances due to load changes. The existing 
control approaches used for PEM fuel cells are based on 
linear models which are linearized at a specific operating 
point [10]. Due to large range of disturbances, such linear 
control approaches have difficulties to achieve satisfactory 
performances. [13] proposed a nonlinear control for PEM 
FCs by using exact linearization approach through a 
reformer which generates hydrogen and oxygen as the inputs 
to the nonlinear controller.  

· The oxygen flow rate is determined by Nitrogen-oxygen 
flow ratio(79/21).  
· The stack temperature is regulated at 80  by using  an 
independent cooling system [4,5].  

Co

· The Nernst’s equation is applied.  

The dynamic nonlinear model developed in this paper is 
based on the fuel cell models provided by the Department of 
Energy (DoE) [2] and Ref.[6] are referred in this paper.  

A. PEM FC Output Voltage Equation 

According to the Nernst’s equation and ohmic’s law, the 
cell voltage equation is given as 
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(1) 
where:  
V : stack output voltage; 
N : number of cells in the stack; 

0E : cell open circuit voltage; 
T : operating temperature; 
L : voltage losses; 
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,, 22 pOpH  and : the partial pressures of each gas 
inside cell; 
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(4a) 

R : gas constant (8.3144 J/mole*k) 
F : Faraday’s constant (96439 C/mole) 

stdP : the standard pressure (101325 Pa) 
 
The voltage losses L is given by  
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where 
i : the output current density; 

where  
ni : the internal current density to internal current losses; 

[ 2 pO2 pH
]T
O2 C

i[
pH
H

]Toi : the exchange current density related to activation losses; x =

li : the limiting current density related to concentration 
losses; 

u O2= 2 _ _in in

=y V  
r : the area specific resistance related to resistive losses; In the above nonlinear model, because the number of 

outputs is less than that of inputs and thus the decoupling 
matrix for exact linearization is not square, exact 
linearization regarding to multiple-input multiple output 
(MIMO) systems can not be directly applied. The problem 
of non-square can be solved by using an extended system [8, 
11]. In other words, additional outputs are chosen and added 
in such a way that a square system appears as a result and 
the decoupling matrix is nonsingular. One possible way to 
make the decoupling matrix square and nonsingular, is to 
define m-p extra states: 

ba, : constants. 

B. State Equations 

Using the same derivation in [13], we obtain the 
following state equation:  
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pmnm

np

xy

xy

−+

++

=

= 11   C. MIMO Nonilnear Dynamic Model of PEM FC 

Consider the following multiple-input single-output 
(MISO) nonlinear system: 

 With the addition of two extra states x  and two 
extra outputs, the MISO nonlinear system Eq. (4) can be 
converted into a MIMO system described by Eq. (6a) and 
Eq. (6b) below so that the decoupling matrix is nonsingular.  
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where x  is the state, u  is the input or 
control  vector and  is the output vector of the 
system. 

nRX ⊂∈ mRU ⊂∈
PRYy ⊂∈

Equations (3) and (1) imply the following nonlinear 
dynamic system model of PEM FC: 

Woonki Na and Dr. Bei Gou are with the Energy System Research
Center at University of Texas at Arlington, Arlington, TX 76019, E-mail: 
bgou@uta.edu. 
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D. Exact Linearization of MIMO Nonlinear System 
Model for PEM FC 

An important property of a nonlinear system is its relative 
degree. In essence, the relative degree represents the number 
of times the output y must be differentiated with respect to 
time so that the input can be expressed explicitly. The 
relative degree for each input u  in Eq. (6) is equal 
to 1 because the corresponding smooth vector field f in Eq. 
(4) is 0. 

321  and , uu

The approach to obtain the exact linearization of the 
MIMO systems is to differentiate the output y  of Eq. (6) 
until the input shows up [9, 10]. By differentiating Eq. (6), 
we have: 
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where represent Lie derivatives of the smooth 
scalar function of h with respect to f  and . If 

 for all i, then the inputs do not show up and we 
have to differentiate again. Assuming that r  is the smallest 
integer such that at least one of the inputs appears in y , 
then 
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Where  for at least one i.  0)(1 ≠− xhLL j
r
fg
j

i

Re-performing the above procedure for each , we can 
obtain a total of m equations in the above form , which can 
be written compactly as 
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where the mm×  matrix E(x) is defined as 
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The matrix E(x) is called the decoupling matrix for the 
MIMO system. If E(x) is nonsingular, the nonlinear state 
feedback control law can be obtained 
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Based on Eq. (10), the decoupling matrix of MIMO 
system model for PEM FC is 
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By the calculation of Lie derivatives, E(x) can be further 
substituted in Eq. (11). 

Furthermore, since the Lie derivative of a scalar function 
h(x) with respect to a vector function f(x) is zero, the 
nonlinear feedback control law can be rewritten into Eq. 
(14) : 
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where E  is given by Eq. (13). )(1 x−

Substituting Eq. (13) into Eq. (9 ) results in a linear 
differential relation between the output y and the new input 
v. 
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Since  and v  are the same as u  and , only  can 
be used for tracking control, so the new control input is 
obtained 

1v 2 1 2u 3v

33133 ekyv ref −=                    
(16) 
where   the    tracking    error   e .  In this form of 
the nonlinear control, a tracking  error  may exist due to 
parameter uncertainty. To obtain more robust control, an 
integral control term is added to Eq. (16) as so in [12]. 

refyy 333 −=
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(17) 

Then the output error dynamics from Eq. (16) is described 
as follows  

 
03323313 =++ ekeke                         

(18) 
The asymptotic tracking is achieved by selecting the gains 

 and  appropriately to place the desired closed-loop 
system poles located in the left hand plane. These control 
gains and  are calculated by the desired poles which 
are located at -200 ± j20. Also, substituting Eq. (17) into Eq. 
(14), yields the control law for u  which is given above in 
Eq. (19). 
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1

The control law u is fed backed to compare with the 
stack current calculated from load current, affecting inlet 
flow rates of hydrogen and oxygen keep supplying to PEM 
FCs . Figure 2 shows the block diagram of nonlinear PEM 
FCs model with exact linearization control. 
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 Nonlinear 
PEM FC Model  

 
 

Nonlinear 
Control law  

 

 

Fig.2. Block diagram of nonlinear PEM FCs model with 
exact linearization control 

III. SIMULATION RESULTS 

To demonstrate the performance of the proposed 
nonlinear control law, the system is simulated using the 
simplified models directly connected to a load consisted of R 
and L. The linear conventional PI controller is used for 
comparison purposes.  

Model parameters used in our simulation are given as 
follows: 
- Cell active area :  2cm7.136=cA
- Volume of anode :V  2cm495.6=a

- Volume of cathode : V  2cm96.12=c

- Number of cells : 150=N  
- Operating cell temperature : 338.5 K 
- Reference potential : .229V10 =E  
- Operating condition 
 

ml/min548,11
ml/min664,3

22

2

=+
=

inin

in

ON
H  

-  Load resistance : 10 Ω  

-  Load reactance : 10 mH 

The simulation has been conducted in SIMULINK 
environment. Figure 3 shows the design of PEM FC dynamic 
model with the nonlinear control, DC to DC converter and 
DC/AC inverter in SIMULINK.  
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Fig. 3 PEM FCs with Nonlinear control connected to               

R-L load in SIMULINK 

Figure 4 shows the dynamic model of PEM fuel cell 
with the implementation of nonlinear control. Inputs to the 
fuel cell are hydrogen, oxygen and load current, while the 
output is the voltage.  

 
Fig. 4 PEM FC Dynamic Model with Nonlinear Control 

To test the transient behaviors of fuel cell with nonlinear 
control, the value of resistance on the R-L load is changed 
from 10 Ω to 5Ω  and 10mH to 5mH at time t=1.0 second 
and from 5 Ω to 10Ω and 5mH to 1o mH at time t=1.5 
second. Figure 5 shows the fuel cell output voltage for the 
load step change. The transient response of fuel cell output 
voltage with nonlinear control is more stable than that of 
conventional PI controller.  

Figure 6 shows the changes of fuel cell stack current for 
the load step change. In figure 6, the transient response of 
fuel cell stack current with nonlinear control can catch the 
reference than that of conventional PI controller for the load 
change. 

 
Fig. 5. Fuel cell output voltage for the load step change 

 

Fig.6 Fuel cell stack current for the load step change 

Figure 7 shows the comparison of fuel cell power 
demand between nonlinear control and PI control, similarly 
to Fig 6, nonlinear control can catch the reference than that 
of conventional PI controller.  

 
Fig. 7  Fuel cell power demand for the load step change 

According to Fig.5, Fig.6 and Fig.7, it is obvious that 
the transient response of fuel cell with nonlinear control is 
better than  that of conventional PI controller under the 
disturbance caused by the load step change. Fuel cell voltage 
and output current have a very good transient behavior when 
using nonlinear control.  

IV. CONCLUSION 

A design of nonlinear control for PEMFC by the exact 
linearization approach has been economically improved 
when only considering the feedback current as the control 
input. By introducing extra states and outputs, the original 
multiple-input single-output (MISO) PEMFC nonlinear 
system model is converted to a multiple-input multiple-
output (MIMO) system model. By adding an integral 
control term to the state feedback control law, the steady 
steady-state error due to parameter uncertainty can be 
reduced. The control performance of the exact linearization 
control law has been tested. The results show that the fuel 
cells with the nonlinear control have very good transient 
behaviors for disturbances. The positive impact of PEM fuel 
cells with nonlinear control on the power systems transients 
needs to be conducted in further study.  
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