
 
 
 
A DIGITAL TECHNIQUE FOR ONLINE IDENTIFICATION AND TRACKING 

OF POWER SYSTEM HARMONICS BASED ON REAL CODED GENETIC 
ALGORITHM 

 
 

Naser Zamanan Jan Sykulski A. K. Al-Othman 
School of Electronics & Computer 

Science 
School of Electronics & Computer 

Science 
Dept. Electrical Engineering 

University of Southampton University of Southampton College of Technological Studies 
U.K. U.K. Kuwait 

nz03r@ecs.soton.ac.uk J.K.Sykulski@soton.ac.uk alothman@paaet.edu.kw 
 
 

ABSTRACT 
Current and voltage waveforms of a distribution or a 
transmission system are not pure sinusoids. There are 
distortions in these waveforms that consist of a 
combination of the fundamental frequency, harmonics 
and high frequency transients. This paper presents an 
enhanced measurement scheme for identification and 
tracking of harmonics in power system. The proposed 
technique is not limited to stationary waveforms, but can 
also estimate harmonics in waveforms with time-varying 
amplitudes. This paper presents a new method based on 
Real Coded Genetic Algorithm, which is a technique for 
optimization inspired by genetics and natural evolution. 
The algorithm was tested using simulated data, and 
effects of sampling rate studied. Results are reported and 
discussed. 
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1.  Introduction 
 
Voltage and current waveforms of a distribution or a 
transmission system are distorted and consist of a 
combination of the fundamental frequency, harmonics 
and high frequency transients. In an ideal electrical power 
system, energy is supplied at a constant frequency with 
specified voltage levels. However, none of these 
conditions are fulfilled in practice because voltage and 
current waveforms are rarely pure sinusoids. Distortions 
can be associated, for instance, with the operation of 
nonlinear loads such as inverters, rectifiers, AC/DC 
converters and a countless number of power electronic 
devices that can add harmonics to the sinusoidal signal. 
Nowadays, it is well known that harmonics have adverse 
effects on the whole power system [1, 2].    
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Various digital signal processing techniques based 
on static and dynamic estimation have been suggested to 
evaluate power system harmonics. Some examples of 
static estimation are the Least-Squared Method (LSM) 

and it is one of the oldest techniques used to fine tune 
state variables. It is based on the minimization of the 
mean square error between the estimated and the 
measured values for the voltage and current amplitudes 
and phase angles. For a nonlinear power system model, 
this technique results in reasonable parameter estimation 
[3]. In the Least Absolute Value estimation (LAV) 
technique the error to be minimized is the absolute error. 
Discrete Fourier Transform (DFT) is based on orthogonal 
functions. According to DFT, the waveform consists of a 
fundamental component increased by an infinite number 
of harmonics. The computational cost of this algorithm is 
low, but its performance can be badly affected by the DC 
component present in the signal [4]. The Fast Fourier 
Transform (FFT) algorithm is a speed-optimized DFT 
version. However, the application of the FFT may lead to 
imprecise results especially due to pitfalls such as 
aliasing, leakage and picked fence effect [5, 6]. On the 
other hand, the Kalman Filter is an example of a dynamic 
estimation, it is based on a dynamic estimation of the 
signal and it has the ability to identify, analyze and locate 
the harmonic content in a non-stationary three phase 
signal. Despite presenting accurate results, previous 
statistical analysis of the signal is necessary. 

Artificial Intelligence (AI) has also been applied to 
power system harmonic evaluation. Artificial Neural 
Networks (ANNs) have been used as an online digital 
system to read and update harmonic parameters of 
electrical signals [7]. The algorithm proposed has fast 
convergence and it precisely evaluates even noisy 
distorted waveforms. 

Genetic Algorithms (GA) have attracted attention as 
a robust algorithm for stochastic search applied to 
optimization problems and it has been used to solve 
several problems in electric power systems with good 
results. The following work presents a new method based 
on Real Coded Genetic Algorithm (RCGA) for the 
analysis of harmonic distortion in a power system. 
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3. Genetic Algorithms 2. Harmonic model 
  

A signal can be defined as a function that carries 
information, usually about a state or a procedure of a 
physical system. However, signals can be represented in 
several ways. Mathematically, a periodic and distorted 
signal can be suitably represented in terms of its 
fundamental frequency and harmonic components, 
expressed as a sum of sinusoidal waveforms referred to as 
the Fourier series. Each frequency is an integer multiple 
of the fundamental system frequency. In order to obtain 
an approximation of such waves, mathematical models 
are employed. 

Genetic Algorithms are adaptive search procedures for 
optimization and learning. The concepts of the algorithms 
are based on natural selection and natural population 
genetics. They involve survival of the fittest among string 
structures. In every generation, a new set of strings are 
generated using bits and pieces of the fittest previous 
strings. They efficiently exploit historical information to 
speculate on new search points with expected improved 
performance [10]. GAs are different than other 
conventional optimization techniques in many ways. They 
use the objective function itself and not the gradient, they 
search from a population of strings and not single point 
and they work with a coding of the parameter set, not with 
the parameter themselves. Because of these reasons, and 
others, GAs are considered as an attractive alternative 
optimization technique.  

 
Consider a voltage waveform with harmonic components, 
written as Equation (1)[8, 9] 
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GA is a simple algorithm, starts with random 

generation of a population. A population consists of a set 
of strings. Usually, the string size ranges between 50-
1000. The population may be of any size according to the 
accuracy required. The population size remains constant 
throughout the whole process. Each string in GAs may be 
divided into a number of sub-strings. The number of sub-
strings, usually, equals to the number of the problem 
variables. The problem variables are coded using suitable 
coding system. In this study real coding system is used. In 
addition to coding and fitness evaluation, the simple GA 
is composed of another three basic operations, 
Reproduction, Crossover and Mutation. Each string of the 
old population goes through these three steps before a 
new population is generated. 

 
Where Vi (t) and V’í (t) are the amplitudes of ith harmonic 
at time t, w is the fundamental frequency and N is the 
number of harmonics present in the voltage waveform. 
Assuming that the voltage waveform is sampled at a 
predefined sampling rate at equal time intervals ∆t, one 
will have a set of m samples, v (t1), v (t2), … v (tm), 
obtained for t1, t2, … tm, where t1 is an arbitrary time 
reference. One can write the following discrete system of 
equations in the state space form, as shown in Equation 
(2) 
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3.1 Characteristics of genetic algorithm 
 
A formal structure of a GA has three components, the 
environment and its elements (search space), a selection 
based on a measurement of performance (fitness of the 
solution) and an adaptive plan (evolutionary operators). 
An initial population (possible solutions) of random 
individuals is usually generated. In the course of the 
evolutionary process, this population is evaluated: each 
individual is given a score, reflecting its ability to adapt to 
a particular environment. In each generation, an 
evolutionary behaviour is observed through two basic 
characteristics: competition and cooperation, where the 
principles of selection and reproduction are applied. 

(2) 
 
In the matrix form, Equation (2) can be rewritten as: 
 

exfV += )(                  (3) 
 
where: 

• V is the voltage sample vector m x 1; 

• f (x) is the ideal connection vector m x 1; 
 

• x is the state vector to be estimated, i. e. the 3.2 Fitness Function 
         voltage amplitudes; 

The Fitness Function (FF) is one of the key elements of 
GAs as it determines whether a given potential solution 
will contribute its elements to future generation through 
the reproduction process. The FF should be able to 
provide a good measure of the quality of the solution and 
should differentiate between the performances of different 
strings. In this study the fitness function is set to minimize 

• e is the noise m x 1 vector to be minimized. 

Now the problem is to fine the optimum values of the 
state vector x that minimize the noise vector using GA. 
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the maximum individual error. The evaluation function is 
the function responsible for the determination of the 
fitness of each individual. Its objective is to evaluate the 
estimation error (e). The coded parameters are substituted 
at the right of Equation (2) and they are compared to the 
measured value in each time step V(t) to calculate the 
average error (e). We use the evaluation function as the 
function of the sum of quadratic errors. Equation (3) can 
be written in the form of: 
 

eixFV ii =− )(    For   i        (4) m,.....2,1=
 
The quadratic error is calculated according to (5) 
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3.3 Selection 
 
The selection, or competition, is a stochastic process in 
which the chance of an individual surviving is 
proportional to its adaptation level. The adaptation is 
measured by the phenotype evolution, that is, the 
characteristics presented by an individual in the problem 
environment. The GA, through selection, determines 
which individuals will go to the reproduction phase. In the 
literature, there are several selection methods, where the 
fittest individuals from each generation are preferentially 
chosen for reproduction [10]. The mechanisms that give 
an adaptive behavior to the GAs are the selective pressure 
and genetic inheritance. The selection imposes pressure 
on the population; promoting the best individuals’ 
survival that, subsequently, produce the potential best 
offspring, converging to an optimal or approximately 
optimal solution. This evolution occurs by means of the 
reproduction and manipulation of the initial population, 
observing equilibrium between stability and adaptability, 
social organization and between cooperation and 
competition. The selection process causes an increase in 
the adaptation of the population of chromosomes, so only 
the individuals with the best fitness values will be 
selected. This will guide the search for the chromosomes 
using fitness value above the average. The members 
maintained by selection can go through changes in their 
fundamental characteristics through the genetic operators 
of mutation and crossover, generating. offspring for the 
next generation. This process is known as reproduction, 
and is repeated until a satisfactory solution set is found. 
 
3.4 Crossover  
 
Crossover is a genetic step in which the members of the 
population obtained after reproduction process are 
randomly mated according to pre-specified probability. 
Each pair mutually interchanges a portion of bits. The 
position at which the interchange starts is selected 

randomly. In this way, new strings are generated to form 
the new population. Crossover can occur at a single 
position or at a number of different positions [10].  
  
3.5 Mutation 
 
After crossover, the population passes through another 
genetic process called mutation. In this process randomly 
selected bits of randomly selected strings are changed 
from 0 to 1 and vice versa. This process occurs according 
to pre-specified probability; usually less than 5% of bits 
are changed in this process. Mutation process is used to 
escape from probable local optimum [10]. 
 
4. Real coded Genetic Algorithms 

 
GAs are inspired by the study of genetics [10-12]. They 
are conceptually based on natural evolution mechanisms 
working on populations of solutions.  An interesting 
feature of GAs is that they do not require any prior 
knowledge of the solution and they tend to exhibit reliable 
performance on the majority of the problems [12]. 

Initially, GAs were designed to operate using binary 
representations of the problem parameters (or unknowns).  
In recent studies, however the superiority of higher 
cardinality alphabet GAs (floating point or integer) has 
been demonstrated with respect to their applications to 
various problems.   A brief description of a real-coded 
GA developed for the solution of the load-flow problem is 
given next. 

In a real-coded genetic algorithm (RCGA), all 
decision variables (unknowns) are expressed as real 
numbers. Explicit conversion to binary does not take 
place. A reduction of computational effort is an obvious 
advantage of a real-coded GA.  Another advantage is that 
an absolute precision is now attainable by making it 
possible to overcome the crucial decision of how many 
bits are needed to represent potential solutions.   

As in a conventional GA, an initial population of 
chromosomes (potential solutions) is randomly created.  
The best size of this population is subject to 
experimentation with the problem at hand.  Having 
created a population of chromosomes, it is possible to 
assess the performance, or fitness, of individual members 
of a population.  This is done through an objective 
function (equation 5) that characterizes an individual’s 
performance in the problem domain.  Then a method 
known as ranking [13], is used to rank individuals 
according to their objective values.  Based on that ranking 
(i.e. fitness) of each chromosome in the initial population, 
a selection scheme is carried out to pick the best 
individuals as members of the new generation.   

The selection scheme used is known as Stochastic 
Universal Sampling [14].  This scheme probabilistically 
selects individuals for reproduction according to their 
fitness.  That is simply implemented by finding the 
cumulative sum of fitness of each chromosome in the 
population and generating equally spaced numbers 
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between 0 and that sum. Therefore, only one random 
number is generated, all the others used being equally 
spaced from that point. The index of the chromosome 
selected is determined by comparing the generated 
numbers with the cumulative sum. The probability of an 
individual being selected is then given by 
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where ( i )f x  is the fitness of individual ix  and ( i )F x  is 
the probability of that individual being selected.  

A discrete recombination method (equivalent to 
crossover) is employed for mating individuals and 
breeding of offsprings.  Discrete recombination 
exchanges variable values between the individuals.  A 
method known as simple crossover [12, 15] is 
implemented. To be specific, let’s assume that 

( )1 1
1 1 ...= nC c c  and ( )2 2

2 1 ...= ncC c  are two chromosomes 

that are being subjected to crossover.  A position 
( )1,2,3,......,∈i 1−n  is randomly assigned.  The two new 

chromosomes are made as follows: 
 

( )1 1 1 2 2
1, 1 2 1, ,..., , ,...+=new i i nC c c c c c      (7) 

 

( )2 2 2 1 1
2, 1 2 1, ,..., , ,...+=new i i nC c c c c c     (8) 

 
Mutation of real-valued population is accomplished 

with the breeder genetic algorithm in [16].  Each variable 
is mutated with a probability by addition of small random 
values (size of the mutation step).  The mutation step can 
be reduced as the algorithm evolves.   

The proposed algorithm uses a generation gap and 
fitness-based reinsertion to implement an elitist strategy 
whereby the most fit individuals always propagate 
through to successive generations.  For example, if G-gap 
= 90%, then population_size ×G-gap new individuals are 
produced at each generation.  And then population_size 
×(G-gap -1) best chromosomes are copied intact from the 
parent generation to the new generation to complete the 
population size (i.e. fill the gap).  According to [10], a 
better average fitness is attained with the adoption of  
elitist strategy. 
 
5. Testing and analysis of the algorithm 
 
Equations 9 and 10 represent a transmission line fault 
situation as seen in [17]. A single phase to ground fault is 
used since it is the most common type and the fault is 
applied at a voltage peak since this is the worst condition 
concerning transients. With a pre-selected sampling rate 
and specified window size, the actual analogue signal is 
converted to discrete digital samples. A/D converters are 
used to generate the measurement vector [V]. The fitness 

function proposed earlier is used to evaluate the RCGA 
solution. A data window size of one cycle is used with 
different sampling frequency. Tables 1 and 2 show the 
results obtained using the fitness function with different 
sampling frequency. It is very clear from the results that 
the estimated results for both voltage and current are very 
accurate. 
 
V(t) =0.0388exp(0.4t)+0.4994cos(wt)+0.3230sin(wt) 
+0.0708cos(2wt)+0.0224sin(2wt)+0.0154cos(3wt) 
+ 0.0165cos(4wt)+0.0219sin(4wt)+0.0176cos(5wt) 
+0.0119sin(5wt)+0.0120cos(6wt)+0.0289sin(6wt) 
+0.0084cos(7wt)+0.0084sin(7wt)    (9) 
 
I(t) =0.0454exp(0.4t)+0.4662cos(wt)+0.0817sin(wt) 
+0.0519cos(2wt)+0.0543sin(2wt)+0.0305cos(3wt) 
+0.0218cos(4wt)+0.0313sin(4wt)+0.0178cos(5wt) 
+0.0244sin(5wt)+0.0159cos(6wt)+0.0196sin(6wt) 
+0.0157cos(7wt)+0.0168sin(7wt)    (10) 

TABLE 1. ESTIMATED HARMONIC MANGNITUEDES FOR V(T) 
USING GA WITH DIFFERENT SAMPLING TIME 

 GA  GA  GA  

target t=0.001 %Error  t=0.0005  %Error  t=0.00001 %Error 
       

0.0388 0.0388 0 0.0388 0 0.0388 0 

0.4994 0.4994 0 0.4994 0 0.4994 0 

0.323 0.323 0 0.323 0 0.323 0 

0.0708 0.0708 0 0.0708 0 0.0708 0 

0.0224 0.0224 0 0.0224 0 0.0224 0 

0.0154 0.0154 0 0.0154 0 0.0154 0 

0.0165 0.0165 0 0.0165 0 0.0165 0 

0.0219 0.0219 0 0.0219 0 0.0218 -0.456621 

0.0176 0.0176 0 0.0176 0 0.0176 0 

0.0119 0.0119 0 0.0119 0 0.0119 0 

0.012 0.012 0 0.012 0 0.012 0 

0.0289 0.0289 0 0.0289 0 0.0289 0 

0.0084 0.0084 0 0.0084 0 0.0084 0 

0.0084 0.0084 0 0.0084 0 0.0084 0 

       

% average error                        0  0 0 0.0326158  

TABLE 2. ESTIMATED HARMONIC MANGNITUEDES FOR I(T) 
USING GA WITH DIFFERENT SAMPLING TIME 

 GA  GA  GA  

target  t=0.001 %Error  t=0.0005     %Error  t=0.00001 %Error 
       

0.0454 0.0454 0 0.0454 0 0.0454 0 

0.4662 0.4662 0 0.4662 0 0.4663 0.02145 

0.0817 0.0817 0 0.0817 0 0.0816 -0.122399 

0.0519 0.0519 0 0.0519 0 0.0519 0 

0.0543 0.0543 0 0.0543 0 0.0543 0 

0.0305 0.0305 0 0.0305 0 0.0305 0 

0.0218 0.0217 -0.45872 0.0219 0.458716 0.0218 0 

0.0313 0.0313 0 0.0313 0 0.0313 0 

0.0178 0.0178 0 0.0178 0 0.0178 0 

0.0244 0.0244 0 0.0243 -0.40984 0.0244 0 

0.0159 0.0159 0 0.0159 0 0.0159 0 

0.0196 0.0197 0.510204 0.0196 0 0.0196 0 

0.0157 0.0157 0 0.0157 0 0.0157 0 

0.0168 0.0168 0 0.0168 0 0.0168 0 

       

% average error                   0.069209  0.062039  0.0102749  
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6. Conclusion 
 
A new method for on-line tracking of power system 
harmonics was proposed. The problem is addressed as an 
estimation problem. Real Coded genetic (RCGA) are used 
to solve this formulated optimization problem. This 
method based on Real Coded genetic algorithm was 
successfully tested using window size of one cycle of 
voltage and current waveform with different sampling 
frequency. The very accurate results obtained show that 
the proposed method can be used as a very reliable on line 
harmonic estimator especially for signals with time 
varying magnitudes. 
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