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ABSTRACT
This paper presents a novel approach for designing a fixed
gain robust power system stabilizer (PSS) with particu-
lar emphasis on achieving a minimum closed loop perfor-
mance, over a wide range of operating and system condi-
tion. The minimum performance requirements of the con-
troller has been decided apriori and obtained by using a
genetic algorithm (GA) based power system stabilizer. The
proposed PSS is robust to changes in the plant parameters
brought about due to changes in system and operating con-
dition, guaranteeing a minimum performance. The efficacy
of the proposed method has been tested on a multimachine
system. The proposed method of tuning the PSS is an at-
tractive alternative to conventional fixed gain stabilizer de-
sign, as it retains the simplicity of the conventional PSS
and still guarantees a robust acceptable performance over a
wider range of operating and system condition.

KEY WORDS
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1 Introduction

Various disturbances like sudden change in loads, changes
in transmission line parameters, fluctuations in output of
turbine and faults etc., result in low frequency oscillations
which are associated with the electromechanical modes of
the system. The use of fast acting high gain AVRs and evo-
lution of large interconnected power systems with trans-
fer of bulk power across weak transmission links have fur-
ther aggravated the problem of low frequency oscillations.
Damping of these oscillations is necessary as they limit the
power transfer capability of the network. The application
of power system stabilizer can help in damping out these
oscillations and improve the system stability[1]. The tradi-
tional and till date, the most popular solution to this prob-
lem is application of conventional power system stabilizer
(CPSS)[2]. However, continual changes in the operating
condition and network parameters result in corresponding
change in system dynamics. This constantly changing na-
ture of power system makes the design of CPSS a difficult
task.

   521-051

Adaptive control methods have been applied to over-

come this problem with some degree of success[4]. How-
ever, the complications involved in implementing such con-
trollers restrict their practical use.

In recent years there has been a growing interest in ro-
bust stabilization and disturbance attenuation problem[5].
H∞ control theory provides a powerful tool to deal with ro-
bust stabilization and disturbance attenuation problem[6].
However, with the standard H∞ control theory, it is often
difficult to obtain a desired degree of performance as well
as a minimum performance guarantee over the entire ex-
pected range of operation of the power system.

This paper provides an alternative method of design-
ing a fixed parameter controller to ensure robustness un-
der model uncertainties. Minimum performance required
of the PSS is expressed in terms of the placement of the
closed loop poles of the system on the s-plane for the en-
tire range of operation. This is achieved by first formulat-
ing objective functions based on system eigen values of a
linearized model of the multimachine system and then op-
timizing these objective functions using Genetic Algorith-
mic techniques to attain the desired level of performance
for the system.

Recently, genetic algorithms are being widely used
for PSS design. Abdel-Magid [8], and Taranto[9] have ap-
plied parameter optimization using GA. The basic operat-
ing principles of GAs[10] are based on the principles of
natural evolution. There are many variations of the genetic
algorithms with the basic form being the simple genetic al-
gorithm (SGA). This algorithm works with a set of popu-
lation of candidate solution represented as strings. The ini-
tial population consists of randomly generated individuals.
At every iteration of the algorithm, fitness of each individ-
ual in current population is computed. The population is
then transformed in stages to yield a new current popula-
tion for next iteration. The transformation is usually done
in three stages by simply applying the following genetic op-
erators: (1) Selection, (2) crossover, and (3) mutation. In
the first stage selection operator is applied as many times as
there are individuals in the populations. In this stage every
individual is replicated with a probability proportional to
its relative fitness in the population. In the next stage, the
crossover operator is applied. Two individuals (Parents) are
chosen and combined to produce two new individuals. The
combination is done by choosing at random a cutting point
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at which each of parents is divided into two parts, these are
exchanged to form the two offspring which replace their
parents in the population. In the final stage, the mutation
operator changes the values in a randomly chosen location
on an individual. The algorithm terminates after a fixed
number iterations and the best individual generated during
the run is taken as the solution.

2 Problem Formulation

2.1 Performance Requirements of Power
System Stabilizers

Practical considerations merely require that the trouble-
some low frequency oscillations, when excited, die down
within a reasonable amount of time. No advantage is
gained by having excessive damping for these system
modes. In fact, it has been noted[2] that aggressive damp-
ing of oscillations can have detrimental effects on the sys-
tem. Hence, rather than maximizing the damping at some
particular operating condition, it seems more appropriate
to decide upon the minimum amount of damping or mini-
mum performance required of the closed loop and attempt
to achieve this over the entire range of operating conditions
which the system experiences. This set of operating con-
ditions, which any given power system might experience,
is always known a priori in terms of maximum and mini-
mum values of power generations, transmissions and loads
and all possible values of the network impedances. It is
therefore possible to model this bounded variation in the
system as an uncertainty and attempt to synthesize a PSS
delivering the required performance over this entire range
of variations.

The following points have been taken into considera-
tions for deciding the performance requirements of a power
system stabilizer.

• The frequency of oscillation is related to synchroniz-
ing torque and hence the imaginary part of the rotor
mode eigen value should not change appreciably due
to feed back.

• If any new modes arise as a result of closing the con-
troller loop (e.g. exciter mode), these should also be
well damped i.e. they should satisfy the same con-
straints on the real part and damping factor as the rotor
modes.

• Real poles close to the origin can result in a sluggish
response and persistent deviations of the system vari-
ables from their steady state values and hence should
be avoided.

If all the closed loop system poles are located to the
left of the contour shown in Fig.1, then the constraints on
the damping factor and the real part of rotor mode eigen
values are satisfied and a well damped small disturbance

response is guaranteed. This contour is referred as the D-
contour[7]. A system is said to be D-stable if all its pole lie
on the left of this contour. This property is referred to as
generalized stability in control literature.

Figure 1. The D-contour on s-plane

2.2 How Much Damping do We Need?

In power system, a damping factor ζ, of at least 10% would
be acceptable to most utilities and can be adopted as the
minimum requirement. Further, having the real part of ro-
tor mode eigen value restricted to be less than a value, say
α, guarantees a minimum decay rate α. A value α = - 0.5 is
considered to be adequate for an acceptable settling time.
The closed loop rotor mode location should simultaneously
satisfy these two constraints for an acceptable small distur-
bance response of the controlled system.

2.3 System Representation

In the study, both linear and nonlinear models of the mul-
timachine system have been considered. Each machine
is represented by IEEE model 1.1[3] and the differential
equations representing the dynamics of system are given in
ref[11].

Linearized 1.1 machine model for the ith machine can
be expressed as

ẋmi = [Ami]xmi+[Bm1i]∆imi+[Bm2i]∆Efdi+[Bm3i]∆Tmi

(1)
where, ∆itmi = [∆idi ∆iqi], xt

mi = [∆δi ∆Smi ∆E
′

qi

∆E
′

di], [Ami] is state matrix and depends upon operating
conditions, [Bm1i] is related to flux linkage with d-axis and
q-axis, [Bm2i] and [Bm3i] are coefficient matrixes, ∆Efdi

is change in output of AVR and ∆Tmi is the change in me-
chanical torque. Description of the various terms and net-
work model is given in ref[11].

The excitation system, represented by a first order
model adequately describes a thyristor excitation system.
Fig.2 shows the block diagram of excitation system. In the
block diagram, Ka and Ta are the AVR gain and its time
constant respectively, Vt is terminal voltage of the genera-
tor, Vs is the output of PSS and Vref is reference input volt-
age. Windup limiter, with upper and lower limits Efdmax
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and Efdmin respectively, has been considered to limit the
output of the AVR.

Ka

1+sTa

        Efd

         Efdmax

     Efdmin

    Vpss

Vt

Vref +
-
+

Figure 2. Excitation System

Two stage lead-lag PSS with following transfer func-
tion is considered.

Vpss = KS

(

sTw

1 + sTw

)(

1 + sT1

1 + sT2

)2

∆Sm (2)

where Ks is PSS gain, T1 and T2 are lead and lag time
constants of PSS, Tw is the washout circuit time constant,
∆Sm is change in slip. Upper and lower limits of limiter
are Vsmax and Vsmin.

2.4 Objective Function

As shown in Appendix I, the equation of D-contour shown
in Fig.1 can be written as

f(z) = Re(z) − min[−ζ|Im(z)|, α] = 0 (3)

where z ∈ C, is a point on D-contour, C represents the
complex plane.

Define J as

J = max[Re(λi) − min{−ζ|Im(λi)|, α}] (4)

i i = 1, 2, ..., n

where, n is the number of eigen values. λi is the ith eigen
value of the system at an operating point. A negative value
of J implies that all the eigen values lie on the left of the
D-contour. Similarly some or all eigen values will lie on
the right of the D contour, if, J is positive. On the basis of
these facts, objective function F is defined as

F =







J

β

if J ≤ 0

if J > 0
(5)

where, β is a large positive constant. Optimization
problem can be stated as

Minimize F

Subjected to:

Kmin
sj ≤ Ksj ≤ Kmax

sj

Tmin
1j ≤ T1j ≤ Tmax

1j

Tmin
2j ≤ T2j ≤ Tmax

2j

j = 1, 2, ...,m

(6)

where, m is the number of machines. Ksj , T1j and T2j are
PSS parameters of jth machine.

3 Proposed Method of Optimization

The proposed method can be explained in following steps:

Step 1. Start with an initial operating condi-
tion,preferably suggested by Larsen and Swann[2], i.e. for
speed input PSS strong system with heavy loading.

Step 2. Solve the constrained optimization problem
given by equation(6) using genetic algorithm and obtain the
PSS parameters.

Step 3. Once PSS parameters are obtained check for
robustness with these parameters. For this, generate a set
of loading conditions.

Step 4. Run load flow for each loading condition,
eliminate those loading conditions for which load flow does
not converge.Obtain the operating conditions from load
flow.

Step 5. For each operating, condition evaluate J , as
given in equation(4).

Step 6. If J ≤ 0 for all operating conditions then all
the eigen values lie on the left of the D-contour, hence PSS
parameters obtained in step 2 guarantee minimum perfor-
mance of PSS with robustness.

Step 7. If J > 0 for some operating conditions then
take the operating for which J is maximum positive as an
initial condition. Go to step 2 and repeat the procedure
till the criteria given in step 6 is satisfied for all operating
conditions.

The flow chart for the above mentioned process is
shown in Fig.3. It is clear from the flow chart that each set
of PSS parameter undergoes the robustness screening. Af-
ter screening of all the sets only that set is selected which
satisfies the minimum performance criteria for the entire
set of operating conditions.

4 Case Study

4.1 Multimachine System

The proposed method has been applied for PSS design in 3
machine 9 bus power system model. Single line diagram of
the system is shown in Fig.4 and machine data are given in
ref[12],[13]. Each machine is equipped with exciter having
Ka = 100 and Ta = 0.05. Limits of the AVR outputs are
taken as ±7. PSS is employed on each of the three ma-
chines. Tw is taken as 10 and output of the PSS is limited
to ±0.15pu.

PSS parameters (Ksi, T1i, T2i, i = 1, 2, 3) are op-
timized simultaneously using genetic algorithm. Popula-
tion size, number of generations, crossover probability and
probability of mutation were taken as 500, 400, 0.95 and
0.033 respectively. The optimal parameters, obtained us-
ing proposed algorithm, are shown in Table 1.

CPSS was designed using tuning guidelines given in
ref [2]. Performance of the proposed PSS is compared with
CPSS, employed on each machine with the following trans-
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Figure 3. Flow chart for the proposed approach
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Figure 4. 3 machine 9 bus system

fer function

Vpss = 2.0

(

10s

1 + 10s

) (

1 + 0.22178s

1 + 0.05s

)2

∆Sm (7)

Table 1. Optimal stabilizer parameters of proposed PSS

Generator KS T1(sec) T2(sec)
G1 23.641 0.1245 0.0244

G2 2.910 0.3215 0.0895

G3 3.732 0.1704 0.0364

4.2 Eigen Value Plots

A range of operating conditions for this system was ob-
tained by varying the system loads and generations from
35% to 250% of the base case. Table 2 shows the nominal
(base case), minimum and maximum loading conditions of
the system.

Table 2. Loading conditions of 3 machine, 9 bus system

Bus No. Power injection(pu)
Minimum Nominal Maximum

P Q P Q P Q

1
∗ - - - - - -

2
+ 0.570 - 1.63 - 3.994 -

3
+ 0.296 - 0.85 - 2.083 -
4 0.000 0.000 0.00 0.00 0.000 0.000
5 -0.438 -0.175 -1.25 -0.50 -3.060 -1.225
6 -0.315 -0.105 -0.90 -0.30 -2.205 -0.735
7 0.000 0.000 0.00 0.00 0.000 0.000
8 -0.350 -0.123 -1.00 -0.35 -2.450 -0.858
9 0.000 0.000 0.00 0.00 0.000 0.000
∗slack bus, +PV bus.

From the loading conditions given in Table 2, approx-
imately 60,000 operating conditions were generated to test
the performance of the proposed PSS for a wide range of
operating conditions. Eigen value plots for these operating
conditions are shown in Fig.5.

Fig.5(a) shows the open loop poles of the system for
the range of load variation.The low frequency oscillatory
modes are seen to be poorly damped or undamped for most
of the operating conditions. Fig.5(b) shows that by using
the CPSS these modes can be shifted in the left of the D-
contour, up to some extent. Fig.5(c) shows the system poles
with proposed PSS. As seen, The low frequency modes
have been shifted into the acceptable region.

4.3 Simulation Results and Discussion

The system is simulated for 10 sec, for various operating
conditions as shown in Table 3.The responses of the sys-
tem with proposed stabilizer have been compared with sys-
tem equipped with CPSS and system without PSS. Ma-
chine 1 has the highest inertia constant and this is taken
as the reference. The responses of Sm21(= Sm2 − Sm1)
and Sm31(= Sm3 − Sm1) have been plotted for each dis-
turbance which is initiated at t = 1.0 sec. The following
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(a) Open loop poles

(b) Closed loop poles with CPSS

(c) Closed loop poles with proposed PSS

Figure 5. Eigen value plots

cases have been considered.
(a) A step change of 0.1 pu in the input mechanical

torque.
(b) A three-phase to ground fault for 100 ms between

buses 6 and 9, and then removal of line between these
buses.

Fig.6 to Fig.8 illustrate the simulation results under
step changes in input mechanical torque. With proposed
PSS settling time as well as peak overshoot is less than that
could be achieved with CPSS. Fig.9 shows the case of an
operating condition for which CPSS is unstable.

Fig.10 illustrates the situation when there is a three-
phase to ground fault between buses 6 and 9 under heavily
loaded operating condition. The system is unstable for this

Table 3. Operating points of generators on a 100 MVA base

Heavy Nominal Light other
P Q P Q P Q P Q

G1 2.21 1.09 0.71 0.28 0.36 0.17 1.85 0.73
G2 1.92 0.57 1.63 0.07 0.80 -0.11 3.85 0.93
G1 1.28 0.36 0.85 -0.11 0.45 -0.20 2.00 0.23

Heavy Nominal Light other
YLA 2.314-j0.925 1.261-j0.504 0.640-j0.542 3.383-j0.194
YLB 2.032-j0.677 0.878-j0.293 0.431-j0.335 2.004-j0.109
YLC 1.584-j0.634 0.969-j0.339 0.472-j0.236 2.503-j0.126
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Figure 6. Step change in mechanical torque(∆Tm = 0.1
pu) at generator 1 under heavy loading condition.
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Figure 7. Step change in mechanical torque(∆Tm = 0.1
pu) at generator 2 under normal loading condition.

disturbance without stabilizer but it is stable with both sta-
bilizers.With proposed stabilizer oscillations are damped
within 2 sec.
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Figure 8. Step change in mechanical torque(∆Tm = 0.1
pu) at generator 3 under light loading condition.
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Figure 9. Step change in mechanical torque(∆Tm = 0.1
pu) at generator 1 under other loading condition given in
Table 3.
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Figure 10. Three phase fault for 100 ms between buses 6
and 9.

5 Conclusion

Performance evaluation of proposed PSS on multimachine
system shows that robust fixed parameter stabilizers are in-

deed a viable solution to the problem of low frequency os-
cillations. Eigen value analysis and extensive simulation
studies show that the proposed method for PSS design pro-
vides the desired closed loop performance over the pre-
specified range of operating conditions. Furthermore, ro-
bust performance of the proposed PSS over a widely vary-
ing operating conditions shows its superiority over existing
stabilizers. The attractive features of the proposed stabi-
lizer are its simple structure and design procedure. Due to
simple design procedure and robust performance the pro-
posed stabilizer bears much potential for practical imple-
mentation.

Appendix Proof of the Equation 3
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Figure 11. D-contour in x − y plane

Consider the Fig.11. As shown, the equation of lines
ABO and CDO in x − y plane can be written as:

|y| = −m.x

⇒ x = − 1

m
|y|

⇒ x + 1

m
|y| = 0 (8)

where m is the +ve slope of the line (i.e. m = | dy
dx
|).

Now equation of line BC can be written as:

x = α

⇒ x − α = 0 (9)

Combining Equations 8 and 9, the equation of D-
contour ABCD can be written as

x − min{−
1

m
|y|, α} = 0 (10)

Defining 1

m
= ζ, and considering the case of complex

plane, Equation 10 can be written as:

f(z) = Re(z) − min[−ζ|Im(z)|, α] = 0 (11)

where z = x + iy (i.e. x = Re(z) & y = Im(z)).
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