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ABSTRACT 
Wind turbines equipped with a Doubly-Fed Induction 
Generator are increasingly popular in the power range 
above 1 MW. For power system stability studies it is 
desirable to apply reduced models of the machine in order 
to limit the computation time. In this paper, the slow and 
fast modes direct decomposition method is used to derive 
a reduced order model of double fed induction machine. 
A comparison is made with other known methods to test 
the performance of the technique. Satisfactory results are 
obtained with slow and fast modes direct decomposition 
method. 
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1. Introduction 
 
As a result of increasing environmental concern, more 
and more electricity is generated from renewable sources. 
One way of generating electricity from renewable sources 
is to use wind turbines. The doubly fed induction 
generator (DFIG) wind turbines are nowadays widely 
used in large wind farms. The main advantage of 
electricity generation from this machine is wide operating 
range from sub-synchronous to super-synchronous speeds 
[1,2]. The DFIG concept also provides a possibility to 
control the overall system power factor.  
 
To facilitate the investigation of the impact of a wind 
farm on the dynamics of the power system to which it is 
connected, an adequate model of the wind turbines is 
required. Although personal computers become faster and 
faster, computational speed is still one of the limiting 
factors in (dynamic) simulation of power systems. One of 
the problems is the complexity of the models that limits 
the computational speed. When reduced models are used 
simulation can be done much faster, but the results may 
be less accurate [3].
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The electromechanical behavior of electrical machine is 
difficult to analyze. The dynamic model of double-fed 
induction machine is of high order. In the study of small 
perturbation it is realized that there exist both large and 

small time constants. To obtain a reduced order model, 
the electromechanical quantities split into two sets: fast 
varying quantities and slow varying quantities. In this 
paper, the approach of slow and fast modes direct 
decomposition is derived by transformation to diagonal 
form. A comparison is made with other known methods to 
test the performance of the technique. 
 
 
2. Doubly Fed Induction Machine Model 
 
The basic configuration of a DFIM is sketched in Fig. 1. 
The most significant feature of this machine is that it has 
to be fed from both stator and rotor side. Normally, the 
stator is directly connected to the grid and the rotor is 
interfaced through a variable frequency bi-directional 
power flow converter in order to cover a wide operation 
range from sub-synchronous to super-synchronous 
speeds. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. DFIM Configuration 
 
The operating principle of a DFIM can be analyzed using 
the classic theory of rotating fields and the well known d-
q model. The phasor diagram showing the reference axis 
is shown in Fig. 2. The basic equations of DFIM are 
considered here. The equations describing a doubly fed 
induction machine can be found in literature [4 - 9]. We 
consider three phase balanced voltage supply of both 
stator and rotor. The reference frame of the machine will 
be chosen in such a way that the quadrature stator voltage  
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 For mechanical parts the equations are: Fig.2. Phasor diagram showing the reference axis 
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is zero. Using the above mentioned convention, the 
following set of equations in complex form are: 
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in which the complex operational impedances are contain 
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  (2) which define δ. 
 
Assume a small perturbation around a steady state 
operating point. This can be described by: 

with V,R,L and I stands for per unit voltage, resistance, 
inductance and current; ωs the stator angular frequency 
and  is the rotor electrical angular speed ; s slip,  Lm the 
mutual inductance, Ls and Lr the stator and rotor leakage 
inductance respectively and ωm is the mechanical 
frequency of the generator. The indices s and r indicate 
stator and rotor quantities and in the later equations d and 
q indicate the direct and quadrature axis components. 
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The instantaneous torque equation is  

.
T J Tmm ω= + e     (3) 

where 
*

Im( )T L I Ise m r=    (4) 

The d-q component of currents are obtained as solution of 
the following system: 
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The numerical values of the parameters of DFIM are 
given in table1. 

Table  1 The Parameters of DFIM 

Symbol             Quantity Per unit value 

Rs 
Rr 

Ls 

stator resistance 
rotor resistance 
stator leakage inductance 

  0.02  
  0.03 
  0.1 

Lr rotor leakage inductance   0.1 
Lm mutual inductance   2.7 
I Inertia   5  
J moment of inertia   100π I 

 

Let us consider the steady state operating point defined 
by: 

0.1, 1,

/ 6, (1- ) 0.90 0

s

s s sm

ω

δ π ω ω

=

= =
 

First we have made a complete state model of the sixth 
order system without any simplification. We have used 
the MATLAB for this purpose. 
 
The eigenvalues of matrix A are:  

  -0.1011 ± 0.9837i 
   -0.1504 ± 0.1216i 
   -0.0031 ± 0.0367i 

The output of the system are considered as: 

    (13) 
 
 
3. Slow and Fast Modes Direct 

Decomposition Method 
 

In the slow and fast modes direct decomposition of a 
system based on the large and small time constants of the 
system. 
 
A system G(s) can be written in decomposition form as: 

[ ( )]G s F= +   (14) 

where [G(s)]S  represents the slow part of G(s)  
[G(s)]F  represents the fast part of G(s) 

Transformation to Diagonal Form: A transformation 
that results in a diagonal form of the system matrix A can 
provide insight into the internal structure of a system.  

Consider a system with distinct eigenvalues 

λ1,λ2,……λn and a modal matrix M, formed by adjoining 
columns of eigenvectors. Let Z be the transformed state 
vector, defined by X=MZ, so that the new set of state and 
output equations are[10,11]: 
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The new system matrix is  (M-1 AM). The product AM 
may be written in terms of the eigenvalues and 
eigenvectors 
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because Ami=λimi is the relationship that defined the 
eigenvalue λi. Equation (16) can be rearranged and 
written 
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           M= Λ     (17) 

where Λ is the diagonal nxn square matrix containing the 
system eigenvalues on the leading diagonal 
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If both sides of Eq. (17) are pre-multiplied by M-1  
-1 -1M AM M M= Λ=Λ    (19) 

The transformed state equations are 

. 'Z Z B U=Λ +     (20) 

where B׀=( M-1B). Equation (20) represents a set of n 
uncoupled first-order differential equations, each of which 
may be written as 

. '
1

r
z z b ui i i ijj
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and does not involve any cross coupling from other states. 
The homogeneous state equations Z

�
=ΛZ are simply 

z
�

i=λizi. 
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After the transformation to diagonal form, we get 
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The systems with repeated eigenvalues may not be 
reducible to a diagonal form, but may be represented in a 
closely related form, known as the Schur form. A unitary 
matrix V can be found via the ordered Schur 
decomposition and get  

11 12
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4. Reduced Order Response 

 
The original double fed induction machine model has six 
distinct eigenvalues. The proposed method of direct 
decomposition method is applied on the model to get 
fourth order and second order reduced models. The 
dynamic performance of the DFIM is analyzed due to the 
step variation in Tm. To observe the performance of the 
method the results are compared with the modes 
decomposition method based on Schur form and Balance 
model truncation via square root method based on hankel 
S.V.[12-14]. 
 
Fig. 3 shows the output response of the original system 
and fourth order reduced system. In Fig. 3, E1 shows the 
response of the reduced order system by the proposed 

method. E2 and E3 show the responses of the reduced 
order system by Schur form and balanced truncation 
method respectively. As seen from the figure, the 
response of the reduced system is indistinguishable from 
the response of the original system. The magnified view 
of the response is also shown in Fig. 3. The balanced 
truncation method gives inferior results compared to other 
methods. Fig. 4 shows responses of the original system 
and second order reduced systems. The magnified view of 
the response shows that balanced truncation method gives 
better results when the system is reduced to a second 
order system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3. Response of the original system and the fourth order reduced 

systems 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.4. Response of the original system and the second order reduced 
systems 

 
For the sake of global evaluation of various methods, it is 
reasonable to introduce an error index. If Y(t) is the output 
response of the original system and Ŷ(t) is the output of 
reduced system, let us consider the error criterion e as 
follows: 

∫

∫ −
= τ

τ

0

0

2)ˆ(

Ydt

dtYY
e    (28) 
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The comparison of above results on different values of 
slip s and per unit inertia I is shown in tables 2 and 3. The 
proposed method (E1) is compared with the other two 
methods (E2 and E3) mentioned earlier. Table 2 shows 
the above defined error for fourth order reduced order 
model. As slip and per unit inertia increase, the error is 
decreasing. Balanced model truncation method (E3) gives 
inferior results compared to other two methods. Table 3 
shows the error for second order reduced order model. In 
this case, method 3  gives better results. 

 
 
 
 
 
 
 
 
 
 

  

  
Table  2  

 Error Criterion or Fourth Order Reduced Order Model 

 

 
 
 

         I         
s  

1 2 5 10 

E1 3.0352E-05 2.4819E-05 6.3658E-06 2.6772E-06 

E2 3.0352E-05 2.4807E-05 6.3738E-06 2.6801E-06 0.02 

E3 2.9250E-04 3.0321E-04 1.1444E-04 4.6457E-05 

E1 7.0135E-06 3.2587E-06 9.9529E-07 3.3428E-07 

E2 7.0140E-06 3.2586E-06 9.9529E-07 3.3646E-07 0.1 

E3 5.8611E-05 4.2805E-05 2.2068E-05 8.8844E-06 

E1 3.5207E-06 1.9317E-06 3.6231E-07 1.1733E-07 

E2 3.5204E-06 1.9315E-06 3.6348E-07 1.1714E-07 0.12 

E3 4.3179E-05 3.8490E-05 1.4354E-05 6.0245E-06 

E1 1.0042E-06 7.3886E-07 1.5752E-07 6.1716E-08 

E2 1.0044E-06 7.5033E-07 1.6430E-07 9.9698E-08 0.15 

E3 2.1193E-05 2.4052E-05 6.4501E-06 2.6446E-06 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

Table  3 
Error Criterion for Second Order Reduced Order Model 

 

 
 
 

         I         
s  

1 2 5 10 

E1 7.0455E-02 1.7540E-01 1.5310E-02 5.7284E-03 

E2 2.4970E-01 7.4422E-02 1.5310E-02 5.7284E-03 0.02 

E3 5.4348E-03 1.2587E-02 8.5286E-03 4.3645E-03 

E1 6.2580E-04 4.3386E-04 3.2486E-04 1.4859E-04 

E2 6.2580E-04 4.3385E-04 3.2486E-04 1.4859E-04 0.1 

E3 2.4810E-03 8.0913E-04 7.4974E-05 9.1442E-05 

E1 1.6434E-03 1.6298E-03 6.8395E-04 3.0078E-04 

E2 1.6433E-03 1.6298E-03 6.8394E-04 3.0078E-04 0.12 

E3 2.1588E-04 8.4581E-04 5.6272E-04 2.7501E-04 

E1 1.3578E-03 1.7178E-03 5.0203E-04 2.1258E-04 

E2 1.3578E-03 1.7178E-03 5.0202E-04 2.1258E-04 0.15 

E3 1.0328E-03 1.5582E-03 4.8716E-04 2.0972E-04 

 

 
 
 
 
 
 
Fig.5. Error plots for fourth order model with respect to the slip at 

different operating conditions 
 
 
The above results are dependent on the operating point. It 
is observed that an increase in slip increases the absolute 
value of rotor eigenvalues. In such cases both stator and 
rotor quantities can be considered as rapidly varying 
quantities. It is clear from the analysis that the fourth 
order response by slow and fast mode direct 
decomposition yields good results, while in the case of 
second order response, the third method shows good 
results. It is concluded that when the difference between 
the modes are more the slow and fast mode 
decomposition method will present good results.  

The error plots for fourth order model are plotted on a 
suitable logarithmic scale with respect to slip at different 
operating conditions. The plots are shown in Fig.5 
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5. Conclusion 
 
For power system stability studies of power systems 
including wind turbines it is desirable to apply reduced 
models of the turbines in order to limit the computation 
time. In this paper, an approach based on decomposition 
of slow and fast mode is used to derive a reduced order 
model of double fed induction generator. The accuracy of 
the model is verified by comparing the step responses of 
the reduced order system and the original system. The 
proposed method is compared with standard model 
reduction techniques. This method leads generally good 
results and also requires less mathematical computation. 
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