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ABSTRACT
This paper reports on the development of a dynamic LTC
transformer model suitable for a dynamic power flow algo-
rithm where the generators dynamic equations are solved
simultaneously and in conjunction with the network alge-
braic equations using Newton's method. The method may
be used for long-term power systems dynamic assessment,
and in addition to the load tap changing transformer model,
a representation of the generator boiler is also included.
These are slow acting devices which are known to impact
on system voltage collapse phenomena; events which may
evolve over periods of time lasting several tens of minutes.
Two test systems are presented to show the versatility of
the simulation tool, including a trip cascading event lead-
ing up to a wide-area voltage collapse. Where appropriate,
result comparisons with the output of a conventional tran-
sient stability program have been carried out.
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1. Introduction

Society's appetite for electricity continues unabated and
with many transmission expansion programmes experienc-
ing delays, existing transmission assets are being over-
stretched. Moreover, increased transmission system load-
ings and wide area disturbance propagation brought about
by widespread interconnectivity, are calling for more accu-
rate assessments of reactive power margins. On the main,
power systems engineers have relied on the use of two
kinds of application programs for bulk power systems as-
sessments: power flows and transient stability. The former
has been used to assess system voltage performance and
active and reactive power flows and losses; all this from a
snapshot of time perspective. Static power flows have been
suitably extended to deal with voltage collapse assessment,
with results normally provided in the form of P-V nose
curves on the power-voltage plane. The approach yields a
rather clear picture as to where the point of voltage collapse
lies, as calculated by the static power flow solution. Never-
theless, it has been argued that the static approach incorpo-
rates no information about the dynamic behaviour of volt-

age collapse and that suitable elements of power systems
dynamics should be included in the formulation. On the
other hand, transient stability algorithms have traditionally
been used to assess power systems dynamic phenomena
from tens of milliseconds up to several seconds. These ap-
plication programs include detailed models of synchronous
generators with their excitation systems, turbines and gov-
ernors; as well as dynamic models of loads and a wide
range of power electronics-based converters. The voltage
collapse phenomena is said to be dynamic in nature and yet
when it presents itself, it normally does it in a manner that
is rather slow when compared to the dynamic time frame of
traditional transient stability programs. It is not uncommon
for a voltage collapse event to evolve over a period of about
30 minutes; a time frame well beyond the intended scope
of transient stability algorithms and models. Slow acting
devices such as the time-dependent, discrete nature of load
tap-changing transformer and boilers are not normally ac-
counted for in transient stability programs and yet these
slow acting devices together with the system load charac-
teristic, have been reported [1] as having a direct bearing
on the extent of a voltage collapse event.

Commensurate with industry's interest in achieving
more realistic dynamic reactive power margins assess-
ments, an existing solution approach [2] based on full time
domain simulations is developed further in this paper. It
is a unifying framework where the power flows represen-
tation of the network is combined with the dynamic mod-
els of the power system to enable combined solutions at
pre-defined discrete time steps using the Newton-Raphson
method. Such an approach is, in essence, a dynamic power
flow method; a method that takes full account of all dy-
namic components in the power system, some of which
may be non-linear and discontinuous in nature.

However, to enable comprehensive assessments of the
many issues surrounding reactive power margins assess-
ments and voltage collapse issues in today's power sys-
tems, fuller models of power plant components are re-
quired than those presented in [2]. Among these is the
development of a dynamic LTC transformer with discrete
taps. Where appropriate, the results reported in this paper
are compared with the output of PSAT [3], a widely used
transient stability simulation package within the academic
community.
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2. Dynamic power flows 

The evolution of power flows in time, following an event,
planned or unplanned, that alters a perceived steady-state
of the network, may be tracked by suitably combining the
dynamic equations of synchronous generators, loads and
controls with the equations associated with a normal power
flow solution:

0 = f(x,y) (1)
ẏ = g(y,x) (2)

where y and x are vectors of integrable and non-integrable
algebraic variables. Generally, f and g are non-linear vec-
tor functions and the non-integrable network variables can-
not be eliminated algebraically. In such a situation, equa-
tions 1 and 2 must be solved simultaneously as a function
of time [4]; where the possibility exists of using a unified
framework to solve for y and x. The set 1 comprises net-
work equations and the stator equations of synchronous
machine, transformed into the network reference frame.
Set 2 comprises the differential equations describing the
synchronous generators and their controls.

2.1 Synchronous generator modelling

Three-phase synchronous generators represent the main
source of electricity generation in interconnected power
systems, where a key aspect of system operation is to main-
tain stable operation by running all synchronous generators
at or near synchronous speed. However, power system dis-
turbances, slowly-acting interactions between controls and
emergency operations in the network may lead one or more
generators in the network deviating from their intended
synchronous speed. To a greater or lesser extent, all power
systems dynamic problems involving synchronous genera-
tors require dynamic representation of their rotors, which
may be in the form of their swing equations:

ω̇ =
πf0

H
[Pm − Pe −D (ω − ω0)] (3)

δ̇ = ω − ωo (4)

where H is the inertia constant, MW·s/MVA, Pm is the
mechanical input power, p.u., Pe is the electrical output
power, p.u., D is the damping coef�cient, s/rad, ω is the
synchronous speed, rad/s, f0 is the system operating fre-
quency, Hz and δ is the load angle, rad.

Assuming balanced operation and equipment, the set
of equations that describe the dynamic behaviour of a
salient-pole synchronous generator, in the dq plane, are:

T ′d0Ė
′
d = Ef + (Xd −X ′

d)Id − E′
q (5)

T ′q0Ė′
q = −E′

d − (Xq −X ′
q)Iq (6)

T ′′q0Ė
′′
d = E′

d + (X ′
q −X ′′

q )Iq − E′′
d (7)

T ′′d0Ė′′
q = E′

q + (X ′
d −X ′′

d )Id − E′′
q (8)

E′
q = Vq + RaIq + (X ′

d −Xl)Id (9)
E′

d = Vd + RaId − (X ′
q −Xl)Iq (10)

E′′
q = Vq + RaIq + (X ′′

d −Xl)Id (11)

E′′
d = Vd + RaId − (X ′′

q −Xl)Iq (12)

where T ′d0, T ′q0, T ′′d0, T ′′q0 are open-circuit transient and
sub-transient time constants in d and q axis, respectively.
E′

d, E′
q , E′′

d , E′′
q , Ė′

d, Ė′
q , Ė′′

d , Ė′′
q are the internal transient

and sub-transient flux  voltages in d and q axis, and their
time derivatives, respectively. Ef is the excitation (inter-
nal) voltage. Vd, Vq are generators terminal voltages in d
and q axis, respectively. Id, Iq , are the generators currents
in d and q axis. X ′

d, X ′
q, X ′′

d , X ′′
q are transient and sub-

transient reactances in d and q axis, respectively, Xd, Xq ,
are synchronous reactances in d and q axis, respectively, Xl

is the leakage reactance, Ra is the armature resistance.

2.2 Network modelling

The basic equations representing the static part of the net-
work are the active and reactive power injections at each
network bus, say k:

Pk =ek

∑
m=1,n

(Gkmem −Bkmfm)+

fk

∑
m=1,n

(Gkmfm + Bkmem)
(13)

Qk =fk

∑
m=1,n

(Gkmem −Bkmfm)−

ek

∑
m=1,n

(Gkmfm + Bkmem)
(14)

where Pk and Qk are the active and reactive powers in-
jected at bus k, ek and fk are the voltage's real and imag-
inary parts at bus k, Gkm and Bkm are the real and imag-
inary parts of the nodal admittance relating buses k and
m. It should be noted that k = m gives rise to the self
admittance of bus k. Each plant component of the power
network is represented by its own form of nodal admittance
elements Gkk, Bkk, Gkm and Bkm.

2.3 Power transformer model

Power transformers are essentials plant components of the
power system. In addition to those that perform the basic
functions of transforming an AC supply voltage into one or
more different AC voltages and providing electrical insula-
tion between the supply voltage and the user's equipment,
there are transformers that are provided with an on-load
tap changing mechanism to regulate voltage magnitude at
a specified point of the network or to control the amount
of active power that flows through the transformer. They
are known as tap-changing and phase-shifting transform-
ers, respectively. The equivalent circuit representation of
a tap-changing transformer of impedance Zl, with the tap
mechanism Tk located on the primary side, and connected
between buses k and m, is shown in Fig. 1.
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The transfer admittance matrix for this equivalent cir-
cuit is:

(
Ykk Ykm

Ymk Ymm

)
=

(
Z−1

l −TkZ−1
l

−TkZ−1
l T 2

k Z−1
l

)
(15)

As indicated in Fig. 2 the transformer tap is discrete and
updated according to the following relation:

Tk = Vlow +

(
Vhigh − Vlow

Tsteps

)
Tpos (16)

The tap's dynamic is represented by the following differ-
ential Equation:

Ṫk =
1

HT

(√
e2

k + f2
k − V0

)
(17)

where HT is the tap's servomotor inertia, ek and fk are the
real and imaginary parts of the voltage at the regulated bus,
V0 is the target voltage magnitude.

k l
T Z

( )2

k k l
T T Z-

( )1
k l

T Z-

k
V

m
V

Figure 1. Tap-changing transformer equivalent circuit.
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Figure 2. Transformer discrete tap.

3. Numerical Solution Technique

The set of algebraic and differential equations that describe
each plant component of the power network are interdepen-
dent and it has been reported that their simultaneous calcu-
lation provides for a more stable numerical solution [2]. To
this end, the system differential equations are transformed
into algebraic equations and appended to the existing set
of algebraic equations for a unified solution. One way of
ensuring a numerically stable transformation is to use the
implicit trapezoidal method, a technique known for giving
reasonably accurate results even when relatively large inte-
gration time steps are selected [5].

The first  step in the application of the trapezoidal
method is to express the system differential equations in

the form of Equation 2. To exemplify the procedure, the
method is applied to dynamic equations 3 and 4:

ω(t) − ω(t−∆t) =
∆t

2

[
πf0

H

(
Pm − Pe(t) −D

(
ω(t) − ω0

))

+
πf0

H

(
Pm − Pe(t−∆t) −D

(
ω(t−∆t) − ω0

)) ]
(18)

δ(t) − δ(t−∆t) =
∆t

2

(
δ̇(t) + δ̇(t−∆t)

)
(19)

Substituting in Equation 18 the expression of electrical
power Pe 

, where the effects of saliency and flux decay are
considered, but assuming constant Pm, we have,

ω(t) − ω(t−∆t) =
∆t

2

[(πf0

H
Pm

+(E′
d(t) −RaId(t) + (X ′

q −Xl)Iq(t))Id(t)

+(E′
q(t) −RaIq(t) + (X ′

d −Xl)Id(t))Iq(t)

−D
(
ω(t) − ω0

) )
+

πf0

H

(
Pm

+(E′
d(t−∆t) −RaId(t−∆t) + (X ′

q −Xl)Iq(t−∆t))Id(t−∆t)

+(E′
q(t−∆t) −RaIq(t=∆t) + (X ′

d −Xl)Id(t−∆t))Iq(t−∆t)

−D
(
ω(t−∆t) − ω0

) )]
(20)

Notice that in this Equation only the transient effects have
been represented, as opposed to sub-transient ones, to keep
the expression at a manageable level. Re-arranging terms,
leads to a more compact expression,

Fω = Fω(t) + Fω(t−∆t) + Cω = 0 (21)
Fδ = Fδ(t) + Fδ(t−∆t) + Cδ = 0 (22)

where

Fω(t) = ω(t) +
∆πf0

2H

(
Pe(t) + Dω(t)

)

Fω(t−∆t) = −ω(t−∆t) +
∆πf0

2H

(
Pe(t−∆t) + Dω(t−∆t)

)

Cω = −∆tπf0

H
(Pm + Dω0)

Likewise, expression 19 is re-arranged,

Fδ(t) = δ(t) −
∆t

2
ω(t)

Fδ(t−∆t) = −δ(t−∆t) −
∆t

2
ω(t−∆t)

Cδ = 2πf0∆t

Equations 13 and 14, describing the active and reactive
powers injected in the network buses, are augmented to
incorporate explicitly the active and reactive powers con-
tributed by all generators in the network. Hence,

P(k) + Pe(genbus(l))

Q(k) + Qe(genbus(l))

(23)

for k=1,. . . ,nbus and l=1,. . . ,ngen, where genbus(l) is an
array of generator-connected buses.
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Equations 13-14 for load buses and Equations 21-22
for generator buses form the necessary set with which to
carry out dynamic power flow  solutions of a power sys-
tem. One option to achieve this is to solve the equation set,
which is non-linear, using the Newton-Raphson method.
Hence, the following linearised equation, around a base
point, provides the computing engine with which to carry
out the solution by iteration:




∆P
∆Q
−−
Fω

Fδ

FE′
d

FE′
q

FE′′
d

FE′′
q




=




J11 | J12

−− + −−
J21 | J22







∆e
∆f
−−
∆ω
∆δ

∆E′
d

∆E′
q

∆E′′
d

∆E′′
q




(24)

Where J11 
is a matrix of first order partial derivatives of

the active and reactive power, P and Q, with respect to
nodal voltages, e,f . The active and reactive powers con-
tributed by the generators are taken into consideration in
the Jacobian term, J11. J22 is a matrix of partial deriva-
tives of generators discretised functions of the form 21 and
22, with respect to generator state variables ω, δ, E′

d, E′
q ,

E′′
d and E′′

q 

. J12 
is a matrix of first  order partial deriva-

tives of active and reactive power at generator buses with
respect to generator state variables. J21 

is a matrix of first 
order partial derivatives of generator discretised functions
of the form 21 and 22, with respect to nodal voltages e,f .

It should be remarked that in Equation 24 the mechan-
ical power Pm contributed by the boiler-turbine-governor
set has been taken to remain constant, for the sake of sim-
plifying the equation. In practice, however, the boiler-
turbine-governor set is an important dynamic element in
power systems long term dynamics and the linearised
Equation 24 may be suitably expanded to accommodate the
boiler-turbine-governor representation.

4. Results

4.1 Validation

To validate the solution technique, a time domain simu-
lation has been carried out and compared with PSAT [3].
The test system used is the nine-bus, three-machine power
system depicted at Fig. 3 [6]. The scenario considered
for this study is a load change at bus 8. A load of 10MW
is added at t = 1m, using a 10 p.u. resistive impedance.
The simulation is run fof five seconds. It should be
noted from Fig. 4 and Fig. 5, that the system response
at Bus 1, is more damped than those at Buses 2 and 3.
This is due to the fact that these two buses are closer to
the perturbation point. Fig. 6 presents the machines an-
gle responses. It is noted that the angular differences of
the machines are small, thus, the system will remain stable
after the disturbance. The simulation results provided by
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Figure 3. 3 Machines 9 buses power system.
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Figure 4. Bus voltage response to a load change.
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Figure 5. PSAT output for bus voltage response to a load
change.

the dynamic power flow simulation agree on well with the
response provided by PSAT, Fig. 5.

4.2 Test Case 1

To demonstrate the applicability and versatility of the dy-
namic power flow computer program, the load connected
at bus 8 is increased by 50%. All loads are represented by
their exponential load model [7]. The simulation period is
25 minutes.

Fig. 7 represents the system with a mechanical power
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Pm constant, dash line, whereas the continuous line rep-
resents the mechanical power associated with the boiler-
turbine-governor set model.
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Figure 7. Synchronous generators' mechanical power.

4.3 Test Case 2

To assess the performance of the Dynamic Load Tap-
Changer (DLTC) model, a separate test case is carried out.
A load increment in bus 8 is used as the source of the per-
turbation. Fig. 8 shows the DLTC performance follow-
ing the perturbation. Dynamic tap-changers 2 and 3 are
closer to the perturbation point and their action is more
pronounced than dynamic tap-changer 1 which is farther
away; it is noted that after an initial drop, it returns to a
value closer to its pre-disturbance value. Fig. 9 gives the
voltage profiles at buses where the load tap changers are
connected to. When the load tap changer is active, 'ON',
given by the continuous line, and when the load tap changer
is inactive, 'OFF', given by the dashed line. In this test
case, the dynamic load tap changer plays a very important
role in improving the voltage profile at these specific points
of the system. However, this may be at the expenses of a
temporary surge in reactive power consumption from the
network, as shown in Fig. 10.

4.4 Test Case 3

To show the wider applicability of the proposed approach,
the New England system [8] depicted in Fig. 11, is used.
The system has been modified to include one tap-changing
transformer between buses 40 and 3.

At first, transmission lines which connect bus 17 with
buses 27, 16 and 18 are tripped; as a consequence bus 17
including its load, is isolated from the system, producing a
voltage drop at the majority of nodes. Next, the transmis-
sion line connecting buses 3 and 18 is taken out of service,
causing that node 18 and its load become separated from
the system, bringing a recovery of system voltages. This is
followed by a tripping of the transmission line connecting
buses 3 to 4; an event that triggers a voltage collapse of the
entire system.

Fig. 12 shows the voltage magnitudes in the remain-
ing 37 buses of the system. Fig. 13 shows the discrete re-
sponse of the tap-changer under abrupt voltage changes. It
can be seen that this device works in its pre-specified work-
ing range, which is from 0.90 to 1.10. The tap changer per-
formance can be observed in Fig. 13. Fig. 14 shows the
voltage profile at the bus where the voltage is controlled by
the tap-changer. As shown, the tap-changer transformer is
able to control the voltage around its specified value, 1 p.u.,
even when the system is undergoing unfavourable condi-
tions.

5. Conclusion

This paper presents a unified framework for dynamic sim-
ulations, where the application of the trapezoidal rule and
Newton-Raphson technique are applied to solve the com-
bined system. The trapezoidal rule is applied to discretise
the synchronous machines variable and the dynamic equa-
tions corresponding to the DLTC. A detailed mathematical
modelling for the synchronous generator is presented.

The solution technique is validated, obtaining accept-
able accuracy results. The New England power system has
been tested and subjected to this approach getting good re-
sults.
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