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ABSTRACT 
This paper presents a novel recurrent neural network 
power system stabilizer (RNNPSS) based on genetic 
algorithm (GA) for a multi machines power system. The 
proposed PSS consists of a recurrent neural network 
identifier (RNNI) and recurrent neural network controller 
(RNNC) that identifies the power system and supplies an 
adaptive signal to the governor and exciter to damp power 
system oscillations. Both the RNNI and RNNC of the PSS 
are trained offline by using GA to determine the optimal 
learning rates. The proposed PSS is simulated for 
three-generator power system, which results demonstrate 
the effectiveness and performance of the proposed PSS. 
 
KEY WORDS 
genetic algorithm, recurrent neural network, power 
system stabilizer. 
 

1. Introduction 
 

Power systems are complex nonlinear systems that often 
exhibit low-frequency oscillations due to dynamic loads 
and/or sudden power system transmission events. Because 
power systems are highly nonlinear, the PSS provides 
supplementary control signals to the exciter and governor 
systems of the generator to dampen these oscillations and 
improve the generator’s dynamic performance. Three 
basic tuning techniques have been successfully utilized 
with PSS applications: the phase compensation method, 
the root-locus method and linear quadratic regulator (LQR) 
[1-3]. These three methods provide excellent performance 
at a given operating point. But the gain settings of these 
stabilizers were solved and based on linear models. Since 
the power systems are highly nonlinear, the operating 
ranges of the conventional stabilizer are usually limited.  

In recent years, a number of adaptive control 
approaches have been proposed to improve their 
performance in nonlinear cases. The artificial intelligent 
(AI) approaches, including a fuzzy based stabilizer, and a 
neural network based stabilizer. Simulation results 
demonstrate that the AI PSS can effectively damp the 
oscillation of power systems [4]. However, the neural 
network proposed in the past was at least three layers. The 
Chaturvedi, D. K. first proposed a generalized 

neuron-based PSS to reduce the number of neuron [5]. In 
this research, a new two-layer recurrent neural networks 
PSS (RNNPSS) was proposed. The RNNPSS lies in 
updating the weights base on back propagation algorithm. 
The weights of the neural networks are updated by using a 
steepest descent algorithm (gradient algorithm). 
Simulation results demonstrate the proposed RNNPSS 
have better performance comparing with the LQR 
method. 

However, an RNNPSS cannot be guaranteed to be 
convergent unless proper learning rate values have been 
chosen. The PSS is very easy to be uncontrollable if the 
RNNI cannot identify the power generators due to 
incorrect choice of learning rates. Moreover, the choices 
of learning rates for RNNPSS are usually determined by 
tried and error [6, 7]. Thus, the time period necessary to 
find the adaptive values for the learning rate is sometimes 
unacceptably long. To overcome this drawback, an 
optimal learning rate based on GA for RNNPSS is 
proposed in this paper. Simulation results demonstrate the 
GA based on RNNPSS has an effectively performance 
and wider operating point range [8].    
 
2. Configuration of Power System 

 
The configuration of three machine power system and 
RNNPSS is shown in Figure 1. One PSS controls one 
generator. The RNNPSS provides a supplementary control 
signals to the exciter and governor systems of the 
generator. The generator states are phase angle deviationΔ
δ, rotation speed deviationΔω, field voltage deviation Δ
eFD and q-axis voltage deviationΔeq respectively. The 
RNNPSS is used to damp these oscillations for power 
system. 
 
3. The Proposed RNNPSS 
 
Figure 2 shows the architecture of the RNNPSS, which 
consists of a RNNI and a RNNC. The RNNI contains five 
inputs, which are the output states of power generators at 
time (t–1) and the output of the RNNC. The RNNC also 
contains five inputs, which are the output states of the 
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power generator and the output of the RNNC at time (t 
-1).  
 
3.1 The RNNI 
Figure 3 shows the neural network structure of the RNNI, 
which consists of a two-layered network structure, input 
layer and output layer. The input layer and output layer 
have Im  neurons and In  neurons, respectively. The 
mathematical operation of the RNNI can be expressed as 
follows. 
 
3.1.1 Input layer 
The input and output of the jth neuron of the input layer 
can be expressed as: 

 

 
Figure 1. Three machine power system 

 

 
Figure 2. The configuration of RNNPSS and power 

system 

 
Figure 3. The network structure of the RNNI 
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and are the input and output of the jth 
neuron of the input layer, 

 
is the recurrent 

weights. 
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3.1.2 Output layer 
The input and output of the kth neuron of the output layer 
are equal and can be expressed as: 
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where  and  are the input and output of the 
kth neuron of the output layer,  is the connected 
weights. 
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Due to the properties of guaranteed convergence, and 
minimizing the performance function, an error function 
for the RNNI is defined as 
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are the power system state 

outputs.  
Using the steepest descent algorithm and according to 

(1)-(4), the weights ( )O
kjW t  and ( )R

jiW t  can be adjusted as 
 

( )( )( 1) ( ) ( ) ( ) ( ) ( )
( )

O O OI
kj kj I kj I k k jO

kj

E tW t W t W t x t D t B t
W t

λ λ∂
+ = − = + −

∂

 (5) 

( ) ( )2

1

( )( 1) ( )
( )

( ) ( ) ( ) ( ) 1 ( ) ( 1)
I

R R I
ji ji I R

ji

n
R O
ji I k k kj j j

k

E tW t W t
W t

W t x t D t W t B t B t

λ

λ
=

∂
+ = −

∂

⎡ ⎤= + − − −⎣ ⎦∑

 (6) 

 

285



where Iλ  is the learning rate of RNNI. 
 
3.2 The RNNC 
The network structure of the RNNC is shown in Figure 4. 
The RNNC consists of a two-layered network structure, 
input layer and output layer. The input layer and output 
layer have Cm  neurons and one neuron, respectively. 
The mathematical operation of the RNNC can be 
expressed as follows. 

 
Figure 4. The network structure of the RNNC 
 

3.2.1 Input layer 
The input and output of the jth neuron of the input layer 
can be expressed as: 
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where  and 

 
are the input and output of the jth 

neuron of the input layer, 
 

is the recurrent 
weights. 
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3.2.2 Output layer 
The output layer has one neuron, in which input and 
output are equal and can be expressed as: 
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Due to the properties of guaranteed convergence, and 
minimizing the performance function, an error function 
for the RNNC is defined as 
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where Cλ  is the learning rate of RNNC. 

 
3.3 RNNPSS Training Algorithm 
According to the above formula, the RNNPSS training 
algorithm is expressed as follows. 
Step 1: For t=1, arbitrarily initialize the RNNI weights 

, 
 

and RNNC weights , . 
Select the RNNI learning rate 
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jiW t ( )O

kjW t )(twR
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I
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λ  and RNNC 
learning rate Cλ  using GA for Optimal Learning 
Rates of RNNPSS shown in section 5.  

Step 2: Calculate RNNI operation ( ),  ( ),  ( )j j jA t B t C t , and 

 using equations (1.a), (1.b), (2) and (3) in 
sequence. Also calaulate the power system state 
outputs. 

)(tDk

Step 3: Update RNNI weights ( 1)O
kjW t +  and ( 1)R

jiW t +  
using equations (5) and (6) in sequence.  

Step 4: Calculate RNNC operation ,  and 
 using equations (7.a), (7.b), (8) and (9) in 

sequence. 
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Step 5: Update RNNC weights  and  
using equations (11) and (12) in sequence.  Let t=t+1, 
return step 2. 

)1( +twO
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4. Genetic Algorithm 

 
In recent years, GA has been proposed for finding the 
optimal value in many applications. In [8], a conventional 
PSS simulation for multi-machine power systems based 
on GA was proposed. The PSS was simulated using 
Matlab toolbox that uses GA to solve the optimal damping 
coefficients. The simulation results show that the GA 
allows simultaneous tuning of the power system damping 
controller under different operating conditions. 

The GA is first initialized a population of binary code 
sets. These binary code sets represent the initial values of 
the learning rate of the neural networks. This technique 
provides a powerful tool for finding the optimal learning 
rates of a neural network by minimizing the error function 
of the neural network selection and genetics.  

The GA algorithm process is shown in Figure 5, 
which includes reproduction, crossover, mutation, and 
fitness calculation. The GA is operated using binary codes 
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on a given population, applying the principle of survival 
of the fittest to produce better and better approximations 
to a solution. Competition among individuals in each 
cycle results in a population in which the fittest 
individuals are selected over the weaker ones. In each 
generation, a new set of approximations is created by 
selecting the individuals according to their level of fitness 
in the application domain and breeding them together 
using operators borrowed from natural genetics. Thus, the 
solutions for the RNNPSS are successively improved with 
respect to the search objective by replacing the least fit 
individuals with new ones, better suited to the 
environment, just as in natural evolution. 

In order to find the optimal learning rates for the 
neural networks, the RNNI and RNNC are first trained 
off-line using GA. The range of learning rates Iλ  and 

Cλ  can be expressed as 
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where and Im Im m,  ,  in ax C inλ λ λ maxCλ are the maximum and 
minimum value of Iλ  and Cλ ,   and  are 

the strings of binary code with  number L. The fitness for 
RNNPSS is defined as 
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where  and  are given in equations (4) and 
(10). 
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Based on the foregoing discussion, a GA for optimal 
learning rates of RNNPSS is expressed as follows. 
Step 1. Initially, arbitrarily 30 sets string  and 

 and calculate
)(tS I

)(tSC )(tIλ  and )(tCλ  for 
individual strings using equations (13) and (14). 
For individual strings, perform the RNNPSS 
Training Algorithm shown in section 3.3 and 
evaluate their fitness using equation (15). 

Step 2. A string pool is created by the reproduction, 
crossover and mutation process or the initial 30 
sets string.  If the smallest fitness in the string 
pool is smaller than a preset small value, the 
optimal string is achieved; otherwise, go to step 3. 

Step 3. Perform the reproduction process, 10 newly 
reproduced strings are copied according to higher 
fitness in the string pool. 

Step 4. Perform the crossover process, 10 sets string are 
created by swapping the newly reproduced strings. 
For individual strings, perform the RNNPSS 
Training Algorithm and evaluate their fitness. 

Step 5.  Perform the mutation process, 10 sets string are 
created by mutating the newly reproduced strings. 

For individual strings, perform the RNNPSS 
Training Algorithm and evaluate their fitness. Go 
to step 2. 

 
5. Computer Simulations 

 
In this section, some simulation results are presented to 
evaluate the effectiveness of the proposed control scheme. 
The mathematical package MATLAB was used for the 
simulations. To test the effectiveness of the control 
scheme, simulations were executed using two types of 
control schemes, the proposed RNNPSS and the linear 
quadratic regulator (LQR) stabilizer, described as follows.  

The nominal state equation of a three-machine power 
system shown in Figure 1 is given as [9]: 

= + +x(t) Ax(t) Bu(t) Tw(t)&       (16) 

where x, u and w are state vector, input vector and 
disturbance vector, respectively, which can be expressed 
as follows: 
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 The system matrix A, B, and T are given as [9]. 
 

 
Figure 5. The flowchart of the genetic algorithm 
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5.1 The proposed RNNPSS 
The GA for optimal learning rates of RNNPSS was used 
to determine the optimal learning rates of Iλ  and Cλ , 
which are 0.0057 and 0.0315 respectively. The initial 
weight values of RNNPSS, ,  and , 

, are all chosen arbitrarily to be between 0.1~0.5. The 
RNNPSS Training Algorithm was used to update weight 
values of RNNPSS and calculate the power system state 
outputs. 

)(tW R
ji )(tW O

kj ( )R
jiw t

( )O
jw t

 
5.2 The linear quadratic regulator (LQR) stabilizer 

[9] 
The control input was u = - Kx . 

Figures 6(a)-(d) show the dynamic state responses of 
machines 1, 2 and 3 for a disturbance 
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using the proposed RNNPSS and the LQR stabilizer. As 
these figures reveal, that improvement in dynamic state 
responses of machines 1, 2 and 3 are achieved by the 
proposed RNNPSS. However, in spite of a disturbance 

in machine 1, the dynamic state responses 
of machines 1, 2 and 3 obtained by applying the LQR 
stabilizer had serious oscillations. These figures indicate 
the power system oscillations were effectively damped by 
proposed RNNPSS. 

1 0.01 pumTΔ =

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. The state responses of machine 1 for a 
disturbance [ ]Tw 01.0001.0001.00=

1

 pu using 
the LQR stabilizer and RNNPSS, (a) ωΔ , (b) 1δΔ ,(c) 

1qeΔ , (d) 1FDeΔ . 
 

To further test the performance of the proposed 
RNNPSS control scheme under different operating 
conditions, the nominal system parameter matrix  

and  is changed with 10%. 
11A

12A
Figures 7(a)-(d) show the dynamic state responses of 

machines 1, 2 and 3 for a disturbance 
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using the proposed RNNPSS and the LQR stabilizer. With 
the proposed RNNPSS being augmented, the dynamic 
state responses of machines 1, 2 and 3 shown in the 
figures above indicate that good performance 
improvement can be achieved for the system parameter 
variations. By contrast, the dynamic state responses of 
machines 1, 2 and 3 of the LQR stabilizer are easily 
affected by a change in the system parameter variations. 
Therefore, an improvement in the dynamic state responses 
of multi-machine system using the proposed RNNPSS 
control scheme can be observed. 
 
6. Conclusion 

 
The RNNPSS proposed in this paper shows faster 
convergence than the LQR stabilizer in a multi-machine 
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power system, because the proposed GA based neural 
network was first trained off-line to determine the optimal 
values of the learning rates. Otherwise, the RNNPSS 
consists of just two layers. Therefore the time 
consumption of the damping oscillations is lower than 
with conventional methods. Moreover, the operating 
range of the RNNPSS is greater than that of the LQR and 
conventional three layer neural networks, since the 
RNNPSS can greatly reduce system complexity and 
effectively damp system oscillations. 
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