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ABSTRACT 
This paper develops on our earlier results about the 
flatness of a single-axis synchronous generator model. In 
this paper, the flatness property of the model is used to 
generate trajectories of motion for the feedback control of 
the single-axis synchronous generator and to compare the 
dynamic performance of the generator controlled with and 
without trajectories of motion. Results presented show 
that the embedding of trajectories of motion leads to 
significant improvement in dynamic stability during 
generator faults that last several cycles. 
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1. Introduction 
 
Control strategies based on feedback-linearisation have 
been used extensively in power systems control with good 
results [1-10]. More recently, dynamic feedback- 
linearisation has received a lot of attention and focus as a 
result of the publications of M. Fliess et al; J. Levine et al; 
B. Kiss et al; P. Rouchon et al, etc. It has been applied to 
many mechanical systems like cranes, cars with n-trailers, 
windshield control, and many theoretical examples [11-
17]. M. Fliess et al [11] in their comprehensive paper 
unifying the theory of flatness and its associated dynamic 
feedback, formalized the concept that two systems are 
equivalent if there is an invertible transformation 
exchanging their trajectories, that is, any variable of one 
system may be expressed as a function of the variables of 
the other system and a finite number of its time 
derivatives. One of the main results of the concept of 
system flatness is that desired trajectories of plant motion 
and the input required to drive the plant along these 
trajectories from one state to another can be generated 
through interpolation. Thus, once the value of the flat 
output and its requisite derivatives are known, all the 
other system variables and the input levels associated to 
the particular set of values are sufficiently defined [11-
17]. It can therefore be shown that if the sets of the flat 
output and its requisite derivatives exist at two different 
time instants, the desired trajectories of plant motion and 

the input required to drive the plant along these 
trajectories, from one of the states to the other (associated 
to each set), could be solved as an interpolation problem 
without integrating the state equations. 
 While, in general, the derivation of a flat output of a 
given system may be non-trivial, Levine [18] has given a 
set of procedures for its computation based on the Smith 
matrix decomposition algorithm. In [19], we showed the 
flatness property of a single-axis synchronous generator 
systems using the method of Levine presented in [18]. 
Results obtained from the synchronous generator 
equipped with a flat-based controller compared 
excellently with those reported from classical feedback-
linearised controllers, published in literature [5-10,19]  
 In the current paper, we explore the flatness property 
of the third-order synchronous generator to generate 
trajectories of motion along which the stabilised plant 
would track to return to equilibrium after a transient. The 
dynamics of the systems stabilised with trajectories of 
motion is compared with that of the same system 
stabilised without trajectories of motion. In section two of 
the paper, results regarding the flatness of the 
synchronous machine model is recollected. In section 
three, gneration of trajectories of motion is discussed. The 
basic structure of the controller used is retained as in 
reference [19]. Simulations comparing the effects of the 
controlled generator with and without trajectories are 
shown in section four. Results presentations and 
discussions are also included in this section. The 
conclusions are presented in section five of the paper. A 
list of references complete the paper. 
 
 
2. Flatness of the Single-Axis Synchronous 

Generator Model 
2.1 Description of the Study System 
 
The one-axis model of the synchronous machine is shown 
in Figure 1. Its dynamics are described by equation (1): 
 
τ d q fd q d d de e e x x i0 & ( )' '= − − − '    
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Figure 1. One-machine infinite bus system 

 
 For this dynamical systems the flat output, gives us 
the framework to derive the endogenous dynamic 
feedback compensators as shown in Figure 2.  
 

 
Figure 2. Block structure of feedback-linearisation 

 
 It was shown in [19] that in this model of the 
synchronous generator,  the system variables 

and can be expressed as real-analytic 
functions of the component of 
x F eq= ( , , )'δ ω e fd

δ  and a finite number of 
its derivatives 
 
x A= ( , &, &&)δ δ δ  (3) 
 
e fd = β δ δ δ( , &, &&)  (4) 
 
 Thus, the states of the SMIBS are functions of the 
linearizing output δ  and its derivatives up to 
orderα = 2 . The endogenous feedback system to the 
following closed loop system is of orderα + =1 3 :  
 So that from the linear system  the dynamic 
compensator is obtained from the following state 
transformations:   
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yielding the equivalent normal form for the system, and 
from which we can compute the nonlinear controller by 
inverting the expressions from &&ω  and e . The state 
transformations are invertible and exist throughout the 

 stable operation 0 .  The resulting 
excitation control is given by:  
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where, 
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 The loop closure is then done to stabilize the 
reference.  Equation (6) is used with  
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and choose such that the linear time invariant error 
dynamics  

ki
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where 
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are stable. 
 
 
3. Flatness and Trajectory Generation 
 
Recall from section (2) that, any component of x  and u  
are functions of the flat output and 
its derivatives up to  and q  respectively.  Thus 
once any value of the flat output and its requisite 
derivatives are known, all the other system variables and 
the input levels associated to the particular set of values 
are sufficiently defined. It can therefore be shown that if 
two sets of the flat output and its requisite derivatives 
exist at two different time slots, the desired trajectories of 
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plant motion and the input required to drive the plant 
along these trajectories from one state to the other 
(associated to each set), could be solved as an 
interpolation problem without integrating the state 
equations. 
 
3.1 The Interpolation Procedure 
 
By reference [20], consider a variable x t( )

t2

),......,

whose time 

evolution is governed by an order dynamics. Let the 
values, and derivatives of the variable 

be known at some instant 
 while at another instant t  the values and 

derivatives of the variable 2 are 
equally known. The problem is to obtain the values of the 
variable . 

nth

x t( )

x t x t x tn( ), &( ),......, ( )( )
1 1 1

t t= 1

x t x t x t( ) ( ) (1 2< <

=
x t, &(2 2 x tn ( )( )

)
 Formulate an interpolation polynomial given by [19] 
 
x t n

n( ( )) .......τ α α τ α τ α τ α τ= + + + + + +
+

0 1 2
2

3
3

2 1
2 1

 (10) 

 

where τ =
−
−

t t
t t

1

2 1

which on differentiation gives 

d
dt t t
τ

=
−
1

2 1
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 From substitutions, differentiations and further 
substitutions it can be verified that the first half of the 
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 The matrices Α and are generated for an 3rd order 
plant dynamics as follows:  
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 Having computed the constants, the system 
trajectories between any two equilibra of the plant 
corresponding to  and  can be generated from 1t 2t
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where is the reference trajectory for the state variable 
of interest. 

refx

 
3.2 Motion Planning 
  
Some obvious results can be inferred: 
 
• The whole trajectory of system motion can be pre-

assigned to move the system from the current 
operating point to a desired equilibrium or steer the 
system from one equilibrium state to another. 

• The time duration of motion from equilibrium state to 
another can be equally pre-assigned. Furthermore this 
pre-assignment may be chosen to satisfy physical 
limitations in the plant such as rate limits or 
saturation. 

• The input required to achieve the specified motion in 
the plant is determined a-priori. 

 
3.3 Sample Trajectories 
 
The trajectory of the load angle was generated for a -15% 
step change in the load angle. Figures 3 and 4 also show 
the generated (planned) trajectory for the 15% fall in 
steady state load angle value and the system’s response in 
tracking it for a period of 5 seconds. Figures 3 and 4 
shows that, the generated trajectories include: 
displacement, velocity and input. The acceleration 
component was assumed zero and no faults were induced 
yet. 
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Figure 3. Generated reference trajectories for a step 

increase in load angle 
 

 
Figure 4. System tracking the generated trajectory for a 

step increase in load angle 
 

Table 1 
Terminal condition and system data of the generator 

Parameter Value 
Machine 
Power [pu] 

1.0 

Power Factor 
[pu] fp

0.85 

Infinite Bus 
Vol.  [V] ∞V

1.0 

Machine 
Speed    

0,ωRw [ s
rad ] 

314.159 

D 0.002 

0dt [s] 5.9 

0qt [s] 0.075 

dx [pu] 1.7 

'
dx [pu] 0.245 

qx [pu]
 

1.64 

'
qx [pu] 0.245 

ar [pu] 0.001096 

4. Simulations, Results and Discussions 
4.1 Simulation Data  
 
The operating point of the system was determined using 
the data in Tables 1 and 2: 
 

Table 2 
Network parameters, control limits and controller gains 

Parameter  Value  0.4 
Reactance Xe [pu] 0.4 
Resistance [p   Re 0.02 
 Field Voltage limits 
[pu]  

  = 4.5 e fd max

e fd min  = 
-4.5 

Controller PID gain [pu]  k11  = 400 
k12      =  95.14  

13k  = 15.86 
 
 In the simulations, it was assumed the generator 
terminals were connected to the infinite bus via a 
transformer and a tie line consisting of a resistance  and 
inductance . A three-phase short circuit fault was 
simulated for: (a) steady state operation from 0.0 seconds 
to 1.0 seconds. (b) Three phase fault at transformer 
terminals from 1.0 seconds to 1.06 seconds  

Re

X e

eV R∞ = =0 0 0 0. , . .   (c) Post fault stabilization/tracking 
from 1.06 seconds or more. The infinite bus system under 
fault condition is as shown in Figure 5 [19]. 
 

 
Figure 5. Fault location on the SMIBS 

 
 Figure 6 shows trajectories generated for steady state 
pre-fault values to steady state post-fault values for a 3-
cycle short circuit fault. Figures 7-10 show the system’s 
response in tracking the trajectories for a post-fault 
duration of three seconds to accommodate the fault 
inception and clearing period (fault duration) for: load 
angle, speed and electrical power.   
 Figures 11-12 show the terminal voltage and field 
voltage tracking response for 11-cycle fault duration 
compared with the system response to set point 
stabilization. The results show a better performance of the 
local trajectory-tracking scheme over the global set point 
tracking. 
 Trajectory tracking can also be very useful in 
reducing the stresses borne by the generator shaft in 
reacting to restore the machine to post fault equilibrium 
under the influence of the controller dynamics. The 
influence of trajectories of motion is particularly 
pronounced for the longer cycles of system faults. 

Re V∞Xe

Gen.
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Figure 6. Generated reference trajectories for a 3-cycle 

fault 
 

 
Figure  7. Load Angle Response Tracking due to a 3-

cycle fault 
 

 
Figure 8. Speed Tracking for a 3-Cycle fault - Response 

 
Figure 9. Speed Tracking for a 3-Cycle fault  Response 

 

 
Figure 10. Electrical Power Tracking for a 3-Cycle fault- 

Response 
 

 
Figure 11. Terminal voltage tracking for an 11-Cycle 

Fault 
 

 
Figure 12. Field voltage tracking for an 11-Cycle Fault 

 
 

5. Conclusion 
 
The theory of dynamic feedback linearization has been 
applied on the third order single machine infinite bus 
system. Simulations have shown that the nonlinear 
dynamic controller achieves asymptotic stability of the 
SMIBS in damping and stabilizing oscillations arising 
from fault induced on the system. The simulations 
showed the ability of the system to track trajectories 
generated from a suitable polynomial using stable states 
of the system. Tracking a generated load angle trajectory 
and velocity during fault oscillations showed a better 
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system response than the set point stabilization in 
bringing the system to post fault equilibrium values. 
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