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Abstract

Psi Intelligent Control aims to provide a framework for controlling

autonomous dynamic systems with prediction capabilities inspired

by Psi precognition. Psi in nature relates to an event or state

not yet experienced. Although Psi phenomenon is unexplained, it

is an inspiration for the present study. The research intends to

define and develop frameworks and systems capable of providing

information for predicting future events (e.g., for motion control

of an autonomous vehicle) and use that information in control of

autonomous dynamic systems. A generalized approach inspired by

Psi precognition is proposed, and the effect of this technique in

the response of dynamic systems is explored. The corresponding

parameters and constraints to develop and analyze Psi Intelligent

Control for dynamic systems are discussed. Obtaining optimized

solutions while considering uncertainties in the system and input

parameters are investigated. Optimal Uncertainty Quantification is

used to obtain optimized solutions for the control of the autonomous

dynamic system, with imperfectly known response functions, input

probability measures and parameters.
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1. Introduction

The term Psi denotes anomalous processes of information
or energy transfer that are currently unexplained in terms
of known physical or biological mechanisms [1]. Although
Psi phenomenon is unexplained, it is an inspiration for
the present study. The representation of the prediction of
future events for control of dynamic systems is explained
in a framework inspired by Psi precognition. An intro-
duction to this research was presented by the authors in
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reference [2]. The current paper intends to extend the in-
vestigation and generalization of the framework of the Psi
Intelligent Control in the context of Optimal Uncertainty
Quantification (OUQ) [3] and Machine Wald [4]. Model
predictive control (MPC) strategies rely on the model of
the dynamic system and also depend on the physical lim-
itations of sensors and actuators response times. A limi-
tation of MPC can be considered as the running time for
the online optimization algorithm which can potentially
require substantial time and computational resources [5].
Psi Intelligent Control uses an agent ahead of time of the
dynamic system (e.g., traveling ahead of a moving vehicle
in the intended trajectory path of the vehicle) to provide
information about the future (e.g., obstacles ahead which
are not detected by the vehicle sensor systems due to sensor
limitations) for the dynamic system (e.g., vehicle) under
investigation.

Examples of various systems that use multi-agent col-
laborative schemes for control can be referred to as swarm
robotics and multi-agent/robot systems, connected vehi-
cles (CVs), etc., where multiple entities present in the
system and communicate with each other to perform a
task. In swarm robotics population, decentralized and au-
tonomous control, homogeneity, scalability, and functional
extension are distinguished factors compared with multi-
agent and multi-robot systems [6]. Obstacle avoidance
is a basic task in swarm robotics and multi-robot opera-
tions. Various approaches are used for obstacle avoidance
such as potential fields [7], vision-based control frameworks
(e.g., [8]), tracking controllers for motion coordination of
multiple mobile robots [9], formation tracking control of
unicycle-type mobile robots [10], atomic nucleus inspired
algorithm for guiding robots around obstacles [11], for-
mation transition based on geometrical features for mul-
tiple autonomous mobile robots [12], and particle swarm
optimization techniques [13].

Another relevant problem is the CV technology in
the development of self-driving vehicles, auto highways,
auto intersection managements, and so on. According to
the Research and Innovative Technology Administration
(RITA) of the US Department of Transportation (DOT),
the CV technology can potentially improve transportation
by reducing 81% of all vehicle target crashes, 83% of all
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light vehicle target crashes, and 72% of all heavy truck
target crashes annually [14]. It will also improve the
congestion problem in the United States, which consumes
up to 4.2 billion hours of traffic and 2.8 billion gallons of
fuel annually. Some recent advances in the CV technology
have been addressed here as follows. A linear programming
formulation for autonomous intersection control within a
dynamic traffic assignment under the CV environment has
been developed to solve autonomous intersection control
[15]. Using CV technology to improve the efficiency of
intersections can result in up to 7% decrease in delay [16].

Traffic signal control strategies mainly rely on an
infrastructure-based vehicle detector. They are generally
point detectors, which cannot directly provide measure-
ment of vehicle location and speed. A real-time adaptive
signal phase allocation algorithm using CV data can be
used for signal control by optimizing the phase sequence
and duration with the two objective functions: minimiza-
tion of total vehicle delay andminimization of queue length.
Such control algorithm can reduce total delay by up to
16.33% in high and low penetration rate cases [17].

Acceleration-based connected cruise control (CCC),
where CCC uses acceleration signals received from multiple
vehicles ahead through wireless vehicle-to-vehicle commu-
nication, can increase roadway traffic mobility [18]. Real-
time driver’s compliance to the posted speed limit has
been used to adjust the vehicle optimal speed limit values,
which shows up to 20% of total travel time reductions,
6%–11% of safety improvements, and 5%–16% reduction
in fuel consumptions [19].

The mathematical model of the behavior of a human
driver, who repetitively learns the correct action from the
past experience, can improve stability and the effectiveness
for path-following of autonomous vehicles [20].

A CCC strategy that controls the velocity of multiple
preceding cars, which changes with memory, is designed to
improve roadway traffic, enhance safety, and reduce fuel
consumptions and exhaust emissions. The CCC strategy
receives signals of velocity changes frommultiple cars ahead
through wireless vehicle-to-vehicle communication and the
relative distance and velocity difference of the immediately
ahead car, using radar [21].

The technology proposed in this paper focuses on
motion control (e.g., trajectory planning) and obstacle
avoidance in two- and three-dimensional cases correspond
to aerial, ground, or underwater vehicles. In case of aerial
vehicles, Unmanned Aerial Vehicles (UAVs) are increas-
ingly used for civilian and military applications including
search and rescue, border interdiction, traffic monitoring,
law enforcement, disaster and emergency management,
wild fire suppression, communications relay, intelligence,
reconnaissance, surveillance missions, and so on [22]. For
aerial vehicle navigation, data including position, velocity,
and attitude are used for guidance and control. Inertial
navigation sensing systems are used for angular velocity
and acceleration, and external non-inertial navigation data
[e.g., by a satellite-based system such as the Global
Positioning System (GPS)] for inevitable drift. GPS
is not always available, and therefore visual (image-
based) navigation is used as an additional sensing system.

Landmark-based approaches use on-board cameras to take
images of selected landmarks during flight and by matching
these images with referenced data which can estimate the
position and attitude of the air vehicle relative to the land-
mark [23], [24]. An algorithm that takes into account kine-
matic and dynamic properties, and also the navigational
capabilities of the air vehicle, can determine a shortest
trajectory of a fixed-wing UAV [25]. This technique can
cope with long-term GPS outages. The algorithm is based
on a discretization of the airspace by a specific network.
In motion planning, it should be noted that, the dynamic
constraints do not allow air vehicles to instantaneously
change their velocity or perform sharp turns (also known
as kinodynamic problems) [26]. Different techniques have
been used in finding a collision-free path of a robot in an
environment with obstacles including mixed integer linear
programs, the potential field method, cell decomposition,
the roadmap method, the mass–spring–damper method,
and several network-based approaches [27], [28].

In dealing with flight path problems, a simplified flight
performance model is considered in various approaches
such as the network-based methods [29]–[31] that gener-
ate a polygonal path from a regular grid discretization of
the airspace. Other methods include performing a path
smoothing after obtaining a collision-free path to deter-
mine a shortest path in a network based on Voronoi poly-
gons [32] which achieves smoothing of the path using a
spring-mass approach, or using a series of cubic splines to
smooth the straight-line segments [33]. Solving the flight
path problem that accounts for no-fly zones and differ-
ential constraints can use sampling-based methods, which
imply rapidly exploring random trees, MPC methods, and
mathematical programming methods based on route plan-
ning optimization [34]. Optimization approaches are also
used for multiple heterogeneous UAVs, with cooperative
decision making and control, which include vehicles with
different operational capabilities and kinematic constraints
[35]. Bioinspired designs are used for autonomous flight
formation of multiple flapping-wing flying vehicles using
motion capture system [36].

2. Psi Intelligent Control

The concept of Psi Intelligent Control is represented
schematically by the example in Figs. 1 and 2. In the
example in Fig. 1, a vehicle is traveling with the speed of
ν and is required to avoid obstacles. The vehicle’s sens-

Figure 1. A vehicle in a dynamic environment.
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ing range is limited. An agent is traveling ahead of time
in the “future” location (Figs. 1 and 2) of the vehicle in
the intended trajectory path of the vehicle [2]. The agent
sensors can detect the obstacles in the “future” location
of the vehicle and inform the vehicle to avoid obstacles
and plan its trajectory ahead of time (before the vehicle
itself can detect) controllers. This allows the control sys-
tem to adjust actuators with the sensors information that
“predicting/feeling the future” of the vehicle with Δt time
before the vehicle can detect the events/obstacles.

In existing multi-robot/agent, swarm, CVs, etc., tech-
nologies, each entity (e.g., robot, agent, vehicles) is
considered as a system equipped with sensors used in
the corresponding control systems for performing various
tasks. The sensing in such technologies is limited to the

Figure 2. An agent is traveling in the future location of
the vehicle.

Figure 3. A block diagram for Psi Intelligent Control.

Figure 4. An example for Psi Intelligent Control.

time and location of the system. The Psi Control concept
explores the possibility of eliminating sensing limitations
by predicting the future, where the sensing system is an
agent dedicated to provide necessary information not lim-
ited to location of the vehicle/robot under consideration.
The Psi Intelligent Control concept is a challenge to fulfill
the requirements of knowing the future status of the vehicle
with no limitation.

A feedback control strategy is represented as in Fig. 3.
The controller is considered as a switch Cd(s) which decides
to apply the current sensor information, or the “future”
information. C1(s) is a conventional obstacle avoidance
algorithm where the Sensor V (Fig. 3) detects the objects
and the actuator drives the vehicle around the obstacle
using a feedback control algorithm. The controller C2(s)
receives information from the agent Sensor A and therefore
allows Δt more time for control decision making and
adjustment due to the sensor information from Sensor A
which is Δt ahead of time. The switching control scheme
can be defined by: If Sensor V is detecting obstacle(s)
then Switch to Controller C 1 Else Switch to Controller
C 2 End.

Figure 4 illustrates an example where a vehicle is
traveling from A to F and the aim is to avoid obstacles in
a minimum time travel. The agent provides information
about the obstacles in the trajectory path of the vehicle
and therefore decides the shortest distance path AB1C.
It continues the travel by knowing the obstacles in the
trajectory path (by the information received from agent
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sensor), and stops at E to avoid collision. Now consider
the case when the information from the agent sensor is
not available. The vehicle chooses the path AB until
the vehicle sensor can detect the obstacle. It can be
shown that the overall travel time for each section can
be minimized when sensor information is received from
the agent by applying the maximum acceleration by the
vehicle’s propulsion system [2]. In addition to the potential
for improving the overall traveling time, the vehicle control
with no agent sensor can fail in avoiding collision at location
F (if the vehicle sensor is not able to detect the moving
object).

The control parameters can be designed for minimizing
traveling time or energy depending on the application
requirements.

This research intends to define and develop frameworks
and systems capable of providing information for predicting
future events (e.g., for motion control of an autonomous
vehicle) and use that information in control of autonomous
dynamic systems. For analyzing a dynamic system and
developing a robust control strategy, it is required to con-
sider uncertainties in the system and deal with imperfectly
known information. Therefore, it is desired to obtain opti-
mized solutions while considering uncertainties in the dy-
namic system and input parameters. OUQ [3] is used here
as a general framework to obtain optimized solutions for Psi
Intelligent Control applied to dynamic systems, which con-
siders imperfectly known response functions, input proba-
bility measures, and parameters. The uncertain informa-
tion can include geometry, obstacles, velocity, acceleration,
the controller system parameters (e.g., time delays, and
sensor and actuator limitations), and disturbances to the
system (e.g., wind gust to a UAV). The general represen-
tation of the problem can be formulated as follows.

For function G : X →R, X→G(X), and probability
of P∈M(X ), we want to certify that the probability of
function G(X) to be greater than b (i.e., to fail) is less
than ε, which can be written as

P[G(X) ≥ b] ≤ ε

We know (G,P)∈A, and the admissible extremal sce-
narios A is [3]

A ⊂
⎧⎨
⎩(g, μ)

∣∣∣∣∣∣
g : X → R

μ ∈ P(X )

⎫⎬
⎭.

For n number of inputs, Xi, i=1, . . . , n, and a bounded
mean output, Eµ[g], A is defined as

A :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(g, μ)

∣∣∣∣∣∣∣∣∣

g : X1 × · · · × Xm → R

μ = μ1 ⊗ μ2 ⊗ · · · ⊗ μm

m1 ≤ Eµ[g] ≤ m2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

where μi is the probability measure of the input param-
eter Xi (μi ∈P(Xi)) and g is a possible transfer function
of the system (G), which gives the output value for in-
put/parameter Xi. The original problem entails optimizing
over a collection of (g, μ) that could be (G,P). Eµ denotes

the average output value (e.g., time or energy) for the
corresponding uncertain parameters, μ; m1 and m2 are
output lower and upper bounds, respectively, if known; and
μi parameters are constrained values with corresponding
lower and upper bounds for each parameter.

The optimal bounds on the probability of the system
input can be described by the upper bound given by

U(A) := sup
(f,µ)∈A

μ[g(X) ≥ b],

and for the lower bound as

L(A) := inf
(f,µ)∈A

μ[g(X) ≥ b]

where the optimal bounds on the probability of the con-
troller output for providing a required performance can be
expressed as

L(A) ≤ P[G(X) ≥ b] ≤ U(A)

The output lower and upper bounds (range) are there-
fore obtained by solving a constrained optimization prob-
lem, U(A), with the inputs/parameters being constrained
as [3]

U(A) := sup
(G,µ)∈A

μ[G(X) ≤ 0]

Solving the optimization problem can be carried out
using any available technique (e.g., genetic algorithm).

If U(A)≤ ε, then the system response is safe even in the
worst case; if ε<L(A), then the system is unsafe even in
best case; and if L(A)≤ ε ≤ U(A), then more information
about the system and parameters is required for analysis
of the response of the system.

In a vehicle motion control problem, the propul-
sion force and moment vectors, F and M , can be
considered as the input to the system, and the displace-
ment, r , as the output. The corresponding accelera-
tion and velocity vectors generated by the propulsion
forcing vectors are bounded due to the physical limits
and time delays. In such problem, the bounded pa-
rameters which include the physical limits of the vehicle
and control systems, and geometrical constraints are as
follows. The bounded input limits can be expressed
as F (x, y, z)∈Xi := [Fmin,Fmax]. For the corresponding
acceleration and velocity vectors, the limits are defined
as amin ≤a1 ≤amax, and vmin ≤ v ≤ vmax, respectively.
The limits for the output due to the path geometrical
constraints can be considered as r j ∈ [r j_min, r j_max],
where vector r j represents the geometry components
(e.g., xj , yj , zj components of r j) with the corresponding
limits xj_min ≤xj ≤xj_max, yj_min ≤ yj ≤ yj_max, and
zj_min ≤ zj ≤ zj_max. The geometric constraint can
also be defined as a function Dj(xj , yj , zj) for a three-
dimensional trajectory problem, where j denotes the dis-
cretization of the geometry for each section j (e.g., sections
ABCDEF in Fig. 4).

A simplified example for motion control problem is
given below. It is assumed that the control is performed in
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a single step (not as a feedback system) and the equation of
motion, which includes the vehicle propulsion force and the

external force excitations, is given by
∑

F =md2r(x,y,z,t)
dt2 .

In this problem, it is assumed that the acceleration and
velocity bounds take into account the sensor and actuator
limits and delays of the control system and the plant.
Therefore, A can be given by

A :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(g, μ)

∣∣∣∣∣∣∣∣∣∣∣∣∣

g : X1 ×X2 ×X3 → R

μ = μ1 ⊗ μ2 ⊗ μ3

r j_min ≤ Eµ[r j ] ≤ r j_max

g = r j

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

.

As an example, the geometric constraint can be con-
sidered as the geometry boundaries and obstacles in Fig. 4.
Then the corresponding problem for optimizing time (or en-
ergy) becomes

U(A) := sup
(r,µ)∈A

μ[r i(X) ≤ 0].

Note that for optimizing energy the cost function F · r
can be used as the output objective function. Therefore,
in this framework if AC trajectory (in Fig. 4) is used,
as for the vehicle with Psi control incorporated in, the
optimized solution (when initial conditions are zero) is

t1 =
(
2AB1C/

(
d2r
dt2

))1/2
for time optimization, where the

AB1C trajectory is the solution of the optimization prob-
lem above. For the vehicle with no Psi control in place,
the trajectory will lead to ABC trajectory. This is the
same solution as before. However, the OUQ framework is
applied here as a general solution of all problems in vehicle
motion control, which can include any scenario not limited
to the simplified example presented here. It should be
noted that other parameters and bounds can be added to
the OUQ including the actuator and sensor physical limits
and time delays, and control parameters such as rise time,
overshoot, and settling time.

The generalization of OUQ to sample data is equivalent
to performing Bayesian Inference but optimizing the prior
(i.e., taking the worst prior). This is also referred to as
Machine Wald [4], where, if an estimation of a function
Φ(μ), is function θ of sample data d, then the estimation
error θ(d)−Φ(μ) is required to be made as close as possible
to zero.

3. Conclusion

A generalized approach inspired by Psi precognition was
proposed in this paper and the effect of this technique
in the response of dynamic systems was discussed. The
corresponding parameters and constraints to develop and
analyze Psi Intelligent Control for dynamic systems were
addressed. Obtaining optimized solutions while consider-
ing uncertainties in the system and input parameters were
investigated using OUQ for the control of the autonomous
dynamic system, with imperfectly known response func-
tions, input probability measures and parameters.
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