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Abstract

This research is part of the musculoskeletal tele-robotic imaging

machine (MSK-TIM) project. The MSK-TIM is a device that

facilitates remote ultrasound diagnosis through remote control of an

ultrasound probe. The work reported here is to facilitate human–

robot interaction in remote ultrasound imaging. To reduce the

overall examination time, areas of improvement include improving

the intuitiveness of control via haptic feedback, mitigating delay,

and improving training. This work investigates developing a virtual

model which can be used for these purposes. Developing a model

to understand the biomechanics of the patient’s wrist is important

in several fields including medicine and robotics. Up to now,

most models have been developed to accurately represent the

complex internal structure of the wrist. However, there are several

applications, such as generating a force for haptic feedback, informing

a predictive controller to mitigate delay, or providing a simulated

training environment, which requires a rapid solution. This study

reports on investigation on how we developed a finite element wrist

model to test the feasibility of a force-feedback control for a remote

ultrasound system. The geometry and material parameters of the

human wrist were obtained in vivo. The finite element model was

then incrementally modified to improve the computational time while

measuring the corresponding error. As a result, the computation

time was reduced by 95%. As a result of this study, it has been

shown that soft tissues can be generalised as a phenomenological

material to decrease model complexity. The average first-order

Ogden parameters for soft tissue in the wrist were derived to be (µ,

α1) = (4.59 kPa, 10.69). Finally, the geometry of anatomy can be

simplified, without a major reduction in accuracy, to greatly reduce

the computation time.
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1. Introduction

The human wrist is a complex joint, consisting of
many different tissues and capable of many various
configurations. However, it is also indispensable in everyday
life. The wrist is used to grasp, pick up, and move
objects; it is through the wrist that most people interact
with the world around them. Unfortunately, the wrist
is also subject to many different injuries or diseases.
Therefore, it is important to model the wrist to understand
its mechanisms, prevent injury, and assist in future
treatments.

There are several different types of wrist models, each
with their own objectives. One area of recent interest
is developing an anatomical wrist model to understand
its complex, underlying mechanisms. This allows for the
study of the wrist without live subjects or cadavers. One
application of such a model is to study the mechanism of
injury and inform rehabilitation. For example, the model
in [1] studied the load distribution in the carpal bones in
different wrist positions to help explain fractures. Similarly,
the model in [2] looked at the strength of the scaphoid
bone at different stages of healing from a fracture to
inform rehabilitation decisions. Wrist models have been
used to investigate diseases such as the ones developed
in [3] and [4] to study carpal tunnel syndrome. Finally,
physics-based wrist models have been used to investigate
medical procedures. For example, [5] simulated a wrist
with a four-corner arthrodesis implant and found that one
insertion orientation resulted in much lower stress. Physics-
based models can be used to predict novel conditions
through an understanding of the underlying mechanics as
opposed to data-based or statistical models [6]. The finite
element method is typically used in these types of models
due to its flexibility, especially with complex geometry [7].
Factors, such as types of loads, orientation and proportion
of geometry, or utilised material models can be adjusted
within a finite element model.

In summary, anatomical models are a useful tool
with several different applications. This is especially true
for the wrist, a crucial joint that is subject to many
pathologies. The previously mentioned wrist models were
developed with the objective of increasing accuracy or
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resolution. However, this is typically in exchange for
a higher computational resource cost or a longer time
to calculate. The models in [6], [8], [9] used 122,000,
3,52,000, and 1,640,000 elements, respectively, with the
latter reporting 496 central processing unit (CPU) hours
to solve. This is necessary to understand the fine details,
such as how a load is transferred throughout the many
constituent components in the joint. However, some use
cases do not require a detailed understanding of the interior
structure. Instead, a simplified model may be sufficient
or even required to meet time constraints. One method
to create a more computationally efficient model is to
design a phenomenological model. Instead of modelling the
geometry and contact between layers of skin, muscle, and
other soft tissue independently, they could be modelled as a
generalised soft tissue in the wrist [10]. The bony structure
could also be simplified depending on the need. This can
greatly speed up the computation time in exchange for
losing detail at the microscopic level.

This research was conceived as part of the mus-
culoskeletal tele-robotic imaging machine (MSK-TIM)
project at the University of Saskatchewan Robotics
Lab. The MSK-TIM is a device that facilitates remote
ultrasound diagnosis through remote control of an
ultrasound probe [11]. Through this technology, locations
with a shortage of trained specialists, such as remote or
rural locations, can still receive required care. A model of
human anatomy was noted to have three main applications
for this project: haptic feedback, manipulator control
scheme, and a virtual sensor. In a conventional ultrasound,
tactile feedback is used to feel around the patient’s anatomy
and navigate the ultrasound probe. However, in robotic
ultrasound, this tactile information is lost as the radiologist
no longer holds the probe. Haptic feedback re-introduces
tactile information partially to the operator through a
haptic interface. The force input to the haptic device
can be generated by a virtual model. Haptic feedback in
remote systems result in more intuitive control, access to
palpation, and lower forces applied to the patient [12], [13].
A mathematical model can also improve the control of the
manipulator. For example, such a model can be used to
predict future states of the system. A predictive controller
can be used to mitigate the effects of latency or provide
delay-compensated force-feedback [14]. Finally, the model
can be used as a virtual sensor for other applications. For
example, if the estimated load exceeds a given threshold, it
could prevent further motion which could harm the patient.
Safety within human-robot interactions is of the utmost
importance and special consideration should be given when
there is contact [42]. Alternatively, this virtual sensor can
be used in environments such as training simulations like
proposed in [43]. A physical load cell is a well-established
technology; however, it cannot be used in all circumstances.
A load cell cannot be mounted in some locations, such as
at the end effector of an ultrasound probe; also integrating
load cells to measure multiple degrees of freedom (DOF)
can drastically increase complexity. Manipulators from
third parties may also be difficult to integrate a load cell
to them. Load cells may also see errors arising from other
factors, including temperature change, noise/vibration,

hysteresis, or incorrect mounting. In contrast, a virtual
sensor or model requires less hardware, can predict future
or novel states, and can provide a larger breadth of
information, if needed. For example, a mechanical model
can predict the stress distribution in areas of contact,
instead of a single number for force or pressure. The
finite element method was chosen since it can potentially
account for differences between patients or changes in wrist
orientation. Therefore, this research will test the feasibility
of using a finite element mode of the wrist to predict the
contact force.

In addition to the applications relevant to the MSK-
TIM project, there are several other uses for modelling
the interaction of the wrist with its external environment.
An example of this is virtual training environments
for medical techniques. With this simulation, a medical
practitioner can practice skills and procedures without
special equipment or materials [15], [16]. However, to
operate smoothly, the computations should be solved
quickly. One final application comes in the form of
physics-based animation which excels at flexibility and
simulating contact between bodies compared to data-based
animations [6], [17]. This is especially valuable if the same
modelling techniques can be applied to other anatomy or
composite structures. Therefore, it is valuable to develop a
quick model for simulating contact forces as opposed to a
slower, comprehensive model.

As part of the MSK-TIM project, this study will
specifically study how the model can predict the contact
forces for robotic ultrasound. This study will include:
(1) measuring the force-displacement curve of a human
arm-probe interaction experimentally, (2) creating a
representative finite element model of the arm, and (3)
simplifying the representative model with the goal of
minimising the computational time.

2. Materials and Methods

2.1 MSK-TIM Device

The experimental force-displacement data was obtained
using a robotic manipulator—the MSK-TIM. This device
was developed by the Robotics Lab at the University
of Saskatchewan to research and develop robotic tele-
ultrasound technology [18]. The manipulator that holds
the ultrasound probe is a 4-DOF robot manipulator with
three prismatic joints and one revolute joint, as seen in
Fig. 1(a). A 1-DOF compression load cell was installed to
measure the force applied to the probe in the vertical axis.
This can be seen in Fig. 1(b). The load cell is designed to
measure up to 15 lb (67 N) based on expected loads during
ultrasound applications [19], [20]. The mean round-trip
delay was measured to be 26 ms [11].

In this study, the MSK-TIM was used to measure
the non-linear stiffness of a human wrist. The applied
force was measured using the integrated load cell while
the corresponding displacement was measured using a dial
gauge, recorded by a video camera. The probe was lowered
onto the subject’s arm at a rate of 0.004 in/s (0.1 mm/s)
until the measured applied load exceeded 12 pounds (53
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Figure 1. MSK-TIM demonstration of (a) available degrees of freedom, and (b) the experimental set-up.

N). This procedure was chosen to stay within a quasi-static
loading scenario and was repeated at least 10 times for each
location. The load cell recorded force data at a frequency
of 30 Hz. The video camera recording displacement of the
dial gauge was operating at a frequency of 60 Hz. Three
locations were considered for this experiment: the distal
head of the ulna, 1 inch (2.5 cm) distal, and 1 inch (2.5
cm) proximal of the ulna head. These locations, going from
the most distal to proximal, will be identified as locations
one, two, and three, respectively. Throughout the entire
experiment, the width of the probe was orientated in the
transverse direction across the wrist.

2.2 Finite Element Model Construction

After obtaining the experimental stiffness data, a finite
element model was developed to replicate the human arm-
probe interaction (a human–robot interaction function).
The purpose of this model is to predict the contact force
given the probe displacement into the arm. The goal is
to develop a model that returns the same results as the
experimental test with a small computation time.

2.2.1 Geometry

The model of the arm consists of two components: the soft
tissue, and the bony structure within.

The exterior of the soft tissue was generated by
replicating the subject’s arm using photogrammetry, a
technique that creates a three-dimensional (3D) model
from multiple photographs of different perspectives. A total
of 287 photographs were uploaded into a photogrammetry
program (Meshroom) to create a mesh of the arm with
600,000 triangles, as shown in Fig. 2. The mesh was
simplified and converted into a solid body defined by
17,000 elements. The body was cut near the fingers and
elbow since they were unnecessary for the analysis and
increased the size of the model. The bony structure within
the arm was modelled as a single solid structure which

was approximated using MRI photos from the literature
[21]. It was hypothesised that only the shape of the bone
under the probe had a substantial effect on stiffness;
and that the bone away from the probe has a negligible
impact. Therefore, a constant cross-section was extruded
throughout the arm. The bone was placed in the arm and a
Boolean operation was used to remove the soft tissue where
bony tissue was present. Three models were generated to
represent the three test locations. The ultrasound probe
geometry was generated based on measurements of the
Phillips Lumify L12-4 transducer.

2.2.2 Material Properties

As mentioned earlier, soft biological tissue expresses
non-linear elastic behaviour. Therefore, an energy-based
method called hyper-elasticity is typically used. The
governing equation for hyper-elasticity is:

S =
∂W

∂A
(A), (1)

where S is the nominal stress tensor, also known first
Piola–Kirchhoff stress tensor, W is the strain energy per
volume, and A is the deformation gradient tensor [22].
Within hyper-elastic theory, there are several different
models which define the function W. In this study, the
Ogden model will be used since it has been shown to
have relatively good accuracy and a reasonable amount of
reference material in the literature [23]–[25]. The first-order
Ogden model is given by:

W (λ1, λ2, λ3) =
2µ

α2
1

(λα1
1 + λα1

2 + λα1
3 − 3) , (2)

where λi are the principal stretches, µ is the initial shear
modulus, and α1 is a phenomenological material property
that defined the Ogden model. Note that the two material
parameters µ and α1 dictate the non-linear stiffness of a
material and are comparable to Young’s modulus for a
linear elastic material. The analytical model used in the
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Figure 2. Human arm model photogrammetry: (a) construction of geometry including the perspectives taken and (b) the
resultant geometry generated.

convergence analysis assumed an incompressible material,
due to the tissue water content, which experiences uni-axial
compression [26]. The component of normal stress on the
skin’s surface from a compressive load was derived to be:

σ11 =
2µ

a1

(
λa11 − λ

−α1
2

1

)
, (3)

where σ is the Cauchy stress tensor.
Several papers have reported the first-order Ogden

parameters for human tissue, varying by location or tissue
type. It was hypothesised that the material parameters
derived from the wrist should be comparable for similar
tissues. Therefore, the material parameters found in the
wrist will be compared to the literature. The material
parameters of similar tissue can be found in Table 1.

Studies [27]–[29] used the same approach as this study,
measuring the load and corresponding displacement during
a compressive load. References [30] and [31] conducted
a biaxial tension test and a tension test, respectively
while using digital image correlation (DIC) to measure the
corresponding displacement. All these studies then used
inverse finite element analysis (FEA) to obtain the material
parameters. To the co-authors’ knowledge, no study has
obtained the first-order Ogden material parameters for the
wrist.

In contrast to the soft tissue, the bone was modelled as
a linear elastic material. However, bone is anisotropic and
exhibits different stiffnesses in longitudinal and transverse
loading. The stiffness of cortical bone in transverse loading
has been reported from 5.1–24.6 GPa [32]–[34]. A Young’s
modulus of 15 GPa and a Poisson ratio of 0.3 were chosen
based on ranges commonly used for cortical bone in wrist
modelling [7]. It was hypothesised and later confirmed,
that the bone deforms negligibly compared with the soft
tissue. Therefore, the material properties of the bone do
not have to be as precise as the soft tissue.

2.2.3 Meshing and Boundary Conditions

The meshing and FEA was done using the static model
in ANSYS 2022 R1 (FEA-A). The computer used in

Figure 3. Boundary conditions of the finite element model
including the load, fixed base support, sliding support at
ends, and remote displacement on the probe.

the simulation included an Intel i7-8700 CPU a GeForce
GTX 1660 graphics processing unit (GPU), and 32 GB of
DDR4 random access memory (RAM) at 2666 MHz. The
calculations were distributed over four cores.

In Fig. 1(a) and in FEA, the x, y, and z -axis correspond
to the distal-proximal axis (or down the length of the
arm), transverse (or across the arm), and in the vertical
direction, respectively. The vertical load was applied to
the arm through the ultrasound probe at a range of
0 to 15 lb-f (67 N), at increments of 0.3 lb-f (1.3 N).
The motion of the probe was limited to the vertical
axis. Underneath the arm was a solid body which was
the ground for the experiment. A displacement boundary
condition was set on the y-z planes corresponding to the
cuts made at the fingers and elbow. At these boundary
conditions, the bone was prevented from displacing in the
x -axis. These loads and boundary conditions can be seen
in Fig. 3.

Three contact regions were defined in the model, shown
in Fig. 4. These are the contacts between the soft tissue
and the ground, bone, and probe, respectively. The contact
region with the ground was created to fix the model
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Table 1
First-Order Ogden Parameters of Human Soft Tissue from the Literature

ID µ (kPa) α1 Tissue Derivation Technique

Skin 1 [27] 5.07 9.14 Human muscle, 90◦ to fiber direction Compression load

Skin 2a [28] 2.60 35.9 Anterior human lower forearm Compression load

Skin 2b [28] 39.8 33.5 Anterior human upper forearm

Skin 2c [28] 9.60 36.0 Posterior human arm

Skin 3 [29] 4.10 23.0 Human finger Compression load

Skin 4 [30] 23.5 -14.5 Human skin Equi-biaxial tension load

Skin 5 [31] 0.13 26.0 Human arm Tension load

and dynamically adjust the contact area with the ground
depending on the load. The second bonded contact was
required for the bone to provide stiffness to the model. The
third bonded contact with the probe allowed the load to
be transferred to the arm model in a way that simulates
the experiment.

The mesh size of the bone and soft tissue was
determined based on a convergence analysis comparing the
simulation to analytical theory. Both methods applied a
15 lb (67 N) uniaxial compressive load on a rectangular
body of approximately the same dimensions as the original
arm model. The resulting probe-end displacement was
measured. A mesh size of 0.15 inches (3.88 mm) was chosen,
which corresponded to an absolute error of under 1%, and
can be seen in Fig. 5.

2.3 Deriving Material Parameters

While the first-order Ogden parameters of human soft
tissue have been reported in the literature it would be good
to determine the value of the parameters which can be
extracted from our experimental data. The benefit of this
is two-fold.
1. The literature does not have the material parameters for

soft tissue at the wrist. This would add to the body of
literature and help identify changes based on location.

2. Deriving the parameters can be used to compare against
the literature to verify the experimental data and finite
element model.
The goal of the material optimisation is to find the

material parameters (µ, α1) which most closely resembles
the experimental data. Error will be measured using
root mean square error (RMSE). Therefore, the objective
function is:

MIN E (µ, α1) =

√∑n
i=1 (Pe(xi)− Ps (xi, µ, α1))

2

n
, (4)

where E(µ, α1) is the RSME, n is the number of
experimental data points taken, Pe (xi) refers to the
experimentally measured force value corresponding to
the ith measured displacement xi, Ps(xi, µ, α1) refers to
the simulated finite element contact force at the same

displacement as Pe (xi). Variable µ is the initial shear
modulus and α1 is a material parameter.

In summary, this function compares the experimentally
measured and simulated forces at the same displacement
for the entire range of experimentally measured displace-
ments. This curve-fitting procedure is constrained by |α1|
> 1 since strain-hardening is expected for a compression
load [35].

The Nelder–Mead optimisation method was used to
find values of µ, α1 which results in a simulated force-
displacement curve that best fits the experimental data
for each three locations. A detailed description of this
optimisation procedure can be found in Appendix 1. Note
that the accuracy of the curve-fitting is dependent on the
accuracy of the experimental data. Three initial points
were selected from Table 1 to provide the biggest range.
These initial points are (µ [kPa], α1) = (5.07, 9.14), (39.8,
33.5), and (0.13, 26.0). For each location, the curve-fitting
algorithm was repeated until two conditions were both
met: First, the standard deviation of the RMSE across the
3-point simplex must be less than 1% of the mean. Second,
the standard deviation of the final parameters across the
3-point simplex must be less than 10% of the mean. The
procedure used to derive the material parameters from
experimental data can be seen in Fig. 6.

2.4 Finite Element Model Simplification

As mentioned earlier, the goal is to make a computationally
efficient finite element model. While the model started
with a 3D scan of a human arm, it was hypothesised that
the model could be simplified to decrease the computation
time. With a quicker solution, the system relying on the
model data can react faster to more recent information.
For example, in haptic feedback, a large delay would mean
that the operator is reacting to outdated information which
makes it difficult and time-consuming to palpate. On the
other hand, a virtual sensor with frequent updates would
quickly determine if the applied load exceeded a safety
threshold. This fast response is essential for real-time
applications. Note that the computation time is not only
dependent on the complexity of the model but also the
capability of the host computer.
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Figure 4. Contact Regions of the (a) probe-soft tissue and base-soft tissue interactions and (b) bone-soft tissue interaction.

Figure 5. Mesh of the finite element model for location 3.

While simplifying the model decreases the computation
time, it often decreases the accuracy of the model. However,
knowledge of the application can help make informed
decisions that limit the impact on the accuracy of the
model. For example, if a model is symmetrical, at least half
the geometry can be removed with negligible impact on
accuracy. In the case of modelling complex geometry like
the human arm, several simplifications can be made but
the effects are not well understood.

This section will investigate several incremental
modifications made to the original model created in
Section 2.3. Both the difference in computation time and
deviation from the original stiffness curve will be measured.
As a result, this experimental approach will not only
measure the effectiveness of simplifying the model but
also help to evaluate if such a change is appropriate. This
can help to inform future designers on how to build an
appropriate model for their cases.

In this part of the study, four primary models were
considered. These were given the names: 1. cylindrical
model, 2. multi-slab model, 3. top-reduced model, and
4. halved model. The purpose of this experiment is to
investigate how simplifications may change the result of the

original model. Therefore, the reported error will be the
RMSE between the original force-displacement curve and
the modified force-displacement curve. As with the original
model, the applied load is set as a boundary condition while
the displacement will be the output of the simulation.

The cylindrical model, seen in Fig. 7(a), is visually
mostly like the original model. This model’s main
identifying feature is that both the soft tissue and bone
have a constant cross-section throughout the model. This
is obtained by extruding the cross-section at the center of
the probe through the entire length of the model. All three
locations have a different model. The main assumption
made in this model is that the local geometry underneath
the probe is the dominant contributor to stiffness, in
contrast to the changes in geometry down the length of
the arm, which have a negligible impact on stiffness. This
model could potentially be reduced to a two-dimensional
model like in [36].

The second simplified model is the multi-slab model
which consists of three laminated slabs as seen in Fig. 7(b).
The top and bottom slabs are made of soft tissue while the
middle slab is made of bone. This model was created by
eliminating the soft tissue to the left and right extremities
of the bone. The three components are each replaced with
rectangular slabs of a set thickness. The thickness of the
middle slab is set as the average thickness of the bone while
the thickness of the top and bottom slab combined is set as
the average thickness of the total soft tissue. For example,
in location 1, the average bone thickness was 0.627 in (15.9
mm) and the average total soft tissue thickness was 0.659
in (16.7 mm). The relative position of the bone within
the soft tissue was a variable and was chosen to minimise
RMSE with the experimental data. Future research could
involve investigating whether the “average” thickness is
the best choice.

When modifying the cylindrical model to the multi-
slab model, the “ground” body is removed, and a fixed
boundary condition is set on the bottom surface. This
model assumes that the skin to the left and right of the
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Figure 6. Inverse finite element analysis procedure to obtain material parameters.

Figure 7. Simplified FE models 1 and 2: (a) cylindrical model and (b) multi-slab model.

bone extremity provides negligible stiffness. In addition, it
assumes that the asymmetrical geometry of the bone-soft
tissue interface can be approximated as a flat surface.

However, there are two main differences: the bone is
rigid, and the length of the top slab is reduced, as shown
in Fig. 8(a). This model assumes that only the skin near
the probe face provides structure to the model. Therefore,
the top-slab elements further away from the probe face
can be removed. This model also makes use of the fact
the bone contributes negligibly to the wrist’s deformation.
The multi-slab finite element model predicts that the bone
contributes under 0.01% of the total deformation at 15 lb
(66.7 N), thus it can be assumed to be rigid.

The fourth and final simplified model, the halved
model, is a continuation of the previous model. However,
half of the model was removed, and both the bone slab
and bottom slab were shortened, as seen in Fig. 8(b). This
model makes use of symmetry to reduce the total number

of elements. Half of the entire model in the transverse
direction was removed and the loading scheme was reduced
by a factor of 2. An appropriate (sliding) boundary
condition is applied to the cut surface. Additionally, since
the load is applied to one end of the arm, it is assumed that
the tissue on the other side contributes less. Therefore,
elements from both the bone and bottom slab can be
removed on the opposite side of the probe without affecting
the results, noticeably.

3. Results

3.1 Experimental Results

The mechanical response of the human arm under load
was investigated both experimentally and numerically.
The force-displacement response obtained from physical
experiments can be seen in Fig. 9. The measured data for
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Figure 8. Simplified FE models 3 and 4: (a) top-reduced model and (b) halved model.

location 1 is indicated by the blue curve, location 2 is
orange, and location 3 is yellow.

As can be seen, locations 1 and 2 have relatively
similar stiffness profiles while location 3 is generally less
stiff. This was expected as location 3 has more volume
of soft tissue. Accounting for the difference in the probe
contact area, the range and shape of the curve are similar
to other experiments on the arm in the literature. This is
especially true for measurements at location 3 in this study
and the lower anterior forearm reported by [28] which are
both measurements of the lower forearm. Variation in the
measurements can be attributed to slight changes in the
position or orientation of the arm relative to the probe as
well as noise from the amplified load cell signal.

3.2 Finite Element Results

Asa result of the convergence analysis, a mesh size of
0.15 inches (3.8 mm) was chosen. At this size, the finite
element model had an absolute percent error under 1%
compared to analytical theory. The measure of error and
computation time with the reciprocal of mesh size can be
found in Fig. 10. The mesh was additionally refined at the
contact area between the probe and soft tissue to accurately
capture local phenomena, as can be seen in Fig. 5.

The finite element model was used to predict the non-
linear stiffness characteristics of the human wrist. This was
first done with material parameters from the literature to
roughly validate the model. For each material parameter,
a forward FEA was conducted to calculate the resultant
force-displacement curve. An example of the deformed
model in the FEM program can be seen in Fig. 11(a).
Fig. 11(b) shows the force-displacement curve generated
within the finite element program. The applied force is
an input while displacement is the measured output of
the model. Specifically, the force on the y-axis is the
load applied to the top of the ultrasound probe as shown
in Fig. 3. The displacement on the x -axis is the average
displacement, also across the top of the probe, which is
a result of the applied force. As expected, the stiffness

increases under a compressive load which suggests strain-
stiffening [35].

This procedure was repeated for all material param-
eters in Table 1 which was then compared to the
experimental data. An example comparison for location 1
can be seen in Fig. 12. This Figure also shows the results of
the convergence analysis. As can be seen, the experimental
results fall within the range of what was predicted using
the material parameters from the literature. Similar results
occurred for location 2 and location 3. Note that the
material parameters vary for multiple reasons: the type
of tissue being measured, the location of the tissue, the
technique to measure stiffness, and the finite element
model.

Following the forward finite element model to verify
the model, a finite element model correction (or inverse
FEA) was conducted to derive material parameters from
the experimental data. Locations 1, 2, and 3 took 21,
29, and 35 iterations, respectively to meet the end
condition. As the material parameters were converging on
a solution, the resulting force-displacement curve aligned
with the experimental data as shown in Fig. 13(a)–
13(c). The Nelder-Mead algorithm uses three test points
for 2-parameter optimisation. Fig. 13(d) shows how the
average RMSE decreases and converges across iterations
on a semi-log graph. Uncertainty in the experimental
data contributed to “error” in curve fitting. With
more precise equipment, the RMSE most likely will
decrease.

As a result of optimising the static finite element model
of the arm-probe interaction, the first-order Ogden material
parameters were obtained; which are the converged values
shown in Table 2.

These results generally lie within the range given by
the parameters in Table 1. The α1 parameter is relatively
similar between locations. However, the shear modulus
for location 1 is larger than for locations 2 and 3 which
suggests that a stiffer tissue is present. The average first-
order Ogden material parameters across all three locations
are (µ, α1) = (4.59 kPa, 10.69).
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Figure 9. Experimental force-displacement curves for all three locations including the mean and a range of two standard
deviations.

Figure 10. Convergence analysis including the percent error and computation time against the reciprocal of mesh size.

Figure 11. Deformed finite element model of location 3 with deformation in inches: (a) final iteration and (b) force–
displacement results obtained within the finite element program .
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Figure 12. Finite element results using several soft-tissue
material properties from the literature vs. experimental
data, location 1.

Table 2
Curve-Fit First-Order Ogden Material Parameters

Location µ (kPa) α1 RMSE (lb) R-Squared

1 9.18 11.24 1.47 0.974

2 2.51 10.08 1.20 0.919

3 2.08 10.75 1.15 0.947

After the curve-fitting process, Bland-Altman plots
were generated to evaluate the agreement across the range
of displacements [37]. These can be seen in Fig. 14. The blue
line represents the mean difference across the entire range
of displacements. The dotted orange lines represent the
limits of agreement which represent 95% of the differences,
or 1.96 standard deviations above and below the mean
difference. As shown in the plots, the average is close
to zero, indicating that the derived parameters do not
consistently over-predict or under-predict results. However,
there may be a weak proportional bias which indicates that
the derived parameters are more accurate at smaller loads.

3.3 Simplification Results

The original finite element model completed the calcula-
tions above with an average CPU time of 920 s. Each model
for all three locations contained an average of 23,000 nodes
and 115,000 elements.

Four simplified models were developed to investigate
how the simplifications may affect both accuracy and
computation time. These simplifications were generally
limited to changes in the geometry of the model. Factors,
such as material properties and mesh parameters were
kept constant to reduce the number of variables. However,
one additional change was made when simplifying the
cylindrical model to the multi-slab model (model 2). The
contact formulation detection method was switched from
the Augmented Lagrange method to the Multi Point
Constraint (MPC) method to have better efficiency in
bonded contacts. When making the halved model (model
4), the applied load was halved along with the geometry.

Each model successfully predicted compression load
applied to the arm. All four showed similar stiffness
characteristics as the original model. The stiffness of each
iteration for location 1 can be seen in Fig. 15. The stiffness
curves for the remaining two locations can be found in
Appendix 2. In general, all simplifications exhibited a larger
absolute error at higher loads.

As expected, with each simplification, the computation
time decreased. A comparison of the model size and the
total computation time of each model can be found on
Fig. 16. The simulation calculated 50 discrete steps, thus
the average computation time per step is 18.4, 14.4, 6.4, and
0.95 s, respectively. Therefore, all models make incremental
cost savings compared to the original model.

The models have also shown with more assumptions
and simplifications comes decreasing accuracy. Figure 17
shows the average normalised RSME (NRMSE) across
simplifications. NRMSE is used instead of RMSE because
the expected magnitude of displacement is different across
the three locations, as seen in Fig. 9. The NRMSE was
calculated as:

NRMSE =
RMSE

xf
=

√
1
n

∑n
i=1 [xo(Pi)− xs (Pi)]

2

xf
, (5)

where xf is the displacement corresponding to the final or
maximum load in the original model. The variable n is the
number of data points or load steps, which is 50. Pi is the
ith load step, which is an input defined prior to running
the simulation. xo and xs are the outputs or displacements
predicted in the original model and simplified model,
respectively, at load step Pi.

The cylindrical model has a relatively small NRMSE of
1.8% of the maximum displacement while the multiple-slab,
top-reduced, and halved models have a higher NRMSE of
6.1%, 9.0%, and 9.6%, respectively. The R-squared values
comparing the results of the simplified models to the
original were 1.000, 0.998, 0.994, and 0.996, respectively.
Note that some noise may be present in the error from
re-meshing the models.

3.4 Discussion

The experiments in this study have resulted in three major
outcomes: (1) a phenomenological model of the human
wrist, (2) the first-order Ogden material parameters for
the soft tissue around the wrist, and (3) an investigation
into possible methods to improve the computation time for
wrist models.

A time-efficient model of the human wrist to simulate
the interaction with external stimuli has many applications.
It could potentially be used for virtual simulation, such as
for medical training, generating haptic force feedback, or
robotic control schemes [16]. The model generated in this
study is a step towards real-time modelling and has shown
that a detailed representation of the bony structure is not
necessary to simulate surface skin deformation. In addition,
soft tissue, such as many layers of the skin, fat, and muscle
can be approximated with a single phenomenological soft
tissue. A benefit of the modelling procedure used in this
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Figure 13. The convergence of the simulated force-displacement curve to the experimental data for (a) location 1; (b) location
2; (c) location 3; and (d) convergence of the average error across the Nelder–Mead optimisation simplex for all three locations.

Figure 14. Bland–Altman plots comparing results from experimental trials and simulation with the curve-fitted parameters
for (a) location 1; (b) location 2; and (c) location 3.

study is that the skin model has a low technological barrier
to entry, requiring only a camera and a computer with
appropriate software.

The primary limitation of this model is that it is a
subject-specific model which may be only accurate for the
original subject. One method to address this problem is

to make one or more “average” models to represent a
set of people. Additionally, with an average time of 18.4
s per calculation step, this model may not be efficient
for real-time applications given the current hardware.
However, improving components, such as the CPU and
RAM or using more cores may considerably decrease
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Figure 15. Simplification results: Force–displacement
curves across iterations, location 1.

the time. One simple numerical experiment showed that
decreasing the number of cores from four to one increased
the CPU time by a factor of 3.2.

Using model-correction FEA, the hyperelastic material
parameters for soft tissue at the wrist were determined.
In general, these first-order Ogden material parameters
are in the range of other soft tissues reported in the
literature. Additionally, the values found between each
location are relatively similar. Location 1 was found
to have a larger initial shear modulus, µ, of 9.18 kPa
compared to locations 2 and 3 with 2.51 and 2.08 kPa,
respectively. This difference is likely due to a change in
tissue or potential pre-strain across locations. This type of
variation across locations was not unexpected and has been
reported in other studies [28]. Future studies could conduct
experimental tests on a variety of participants to quantify
the typical, non-pathological range for the general popu-
lation and to investigate differences. Additional variables,
such as pre-strain or compressibility, with more precise
equipment, could be investigated in future work. Finally,
this work can be continued by investigating anatomy,
besides the wrist, which has not been reported in the
literature.

Additionally, this study investigated simplifications
that could be made to improve the computation time of
anatomical models. For example, simplifying the arm into
an extruded cross-section was shown to be an effective
change, reducing the number of elements by 43% with
a small average variation of 1.8% NRMSE compared to
the original model. This model could be further refined
by selecting a better cross-section, such as the “average”
cross-section underneath the probe face.

The multi-slab model had an average NRMSE of 6.1%
and reduced the CPU time by 65%. Therefore, replacing
the cylindrical geometry with laminated slabs improves
calculation efficiency while having a minimal increase in
error. Some of the error is inherited from the cylindrical
model since it was used to estimate the appropriate
thickness of each slab. Additionally, the rounded bodies are
flattened which may have altered the stiffness behaviour
arising from geometry. Besides the time savings, another
potential benefit of this model is its flexibility. This
model is primarily defined by three variables, the thickness
of each slab, and thus could be adjusted to model a
variety of people. The model could similarly be used

for different orientations of the arm, such as rotation of the
wrist.

Both the top-reduced and halved models were
developed explicitly for time-efficiency—reducing the
computation time. They had a reduced computation time
of 83% and 95% compared with the original model’s
computation time. The halved model calculated each step
every 0.95 s which means it can model experimental trials
in real-time. This time is reasonable, especially with an
asynchronous framework as proposed in [15]. The final
model had a RMSE of 9.6% and R-squared value of 0.996.
Additionally, the shape of the stiffness curve has been
maintained from the original model to the final model, as
seen in Fig. 15. A future area of research is to investigate
which factors are important for effective haptic feedback
in a time-delayed system, such as accuracy of material
stiffness, non-linear effects, or prediction reliability. This
research would investigate what is required for the model,
whether an accurate representation of the biological
tissue or only a reasonable, positive force–displacement
relationship. This research can inform future model design.

The main constraint of the computer system seemed
to be the CPU. Thus, time could be further improved
with a faster CPU and using more cores, keeping in
mind that increasing the number of cores has decreasing
returns. Currently, the software predicting the contact
load is independent of the physical system. Work must
be done to integrate it into the existing telesonography
device. The geometry of the model could also be further
improved. For example, the length of the bone and bottom
skin could also be reduced, depending on the allowable
error. This investigation in model efficiency does not only
affect wrist models, but it can also be applied to models
of other anatomy, such as fingers, the arms, or legs. The
investigation of a rigid manipulator to soft tissue can be
reversed to investigate soft robots interacting with their
environment.

Another direction of future research includes inves-
tigating the effectiveness of different formulations and
material models. FEA-A updates the deformation and
stiffness matrix every time step for nonlinear geometry. The
Ogden function defines how the stress and stiffness matrices
are updated based on stretch as derived for this research
in (3) [38]. A computer program called SPACAR has been
shown to accurately model the interaction between soft and
rigid bodies—including forces like a multi-region contact
model and friction. In [39], a method for building a kinetic
model for steerable catheters, which captures geometric
nonlinearity, was presented. The program SPACAR was
originally presented in [41]. The program is based on the
finite element method for multi-DOF mechanisms. The
program, which is written in FORTRAN, can analyse
dynamics of spatial mechanisms and manipulators with
flexible links; it treats the general motion by coupling large
displacement/rotation with small elastic deformation. This
program, which has the capability to update stiffness and
damping matrices with each time step, is a good alternative
for soft and rigid bodies robot motion. However, the
program is typically used for small model mechanisms, as
the readily available version is limited to 120 DOFs, or 20
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Figure 16. Average simplification results across all three locations: (a) total computation time and (b) model elements.

Figure 17. Average measurement error (NRMSE) for all
three locations across simplifications.

beam elements with 6 DOFs. Our model would have to be
further simplified with a current minimum of 6000 elements
in the smallest model. Furthermore, SPACAR program is
designed mostly for geometric nonlinearity (large rotations
and small elastic deformations), while the case presented
in our paper, is mostly deal with material nonlinearity.
Alternative solid mechanics model that could be researched
is Neo–Hookean solid; this model is a hyper-elastic material
model, like Hooke’s law, that can be used for predicting the
nonlinear stress–strain behaviour of materials undergoing
large deformations.

4. Conclusion

This research is part of the MSK-TIM project at
the University of Saskatchewan which has developed
technology for remote ultrasound diagnosis. A material
mode of the wrist can be used to generate force-
feedback, which has several applications in human–robot
interactions. These include generating haptic feedback,
informing control schemes, and software safety systems.
Therefore, the goal of this research was to develop a
computationally efficient model of the wrist to simulate
contact with the external environment. This study
consisted of three components: experimentally measuring
the stiffness curve of an arm-probe interaction, developing
a finite element model to simulate the interaction, and
simplifying the model to decrease computation time.

There are three main outcomes of this research. First,
it has been shown that a complex model including the
anatomical structure of the wrist is not necessary to predict
contact behaviour. In this study, several distinct tissues

including layers of skin, muscle, and nerves were simplified
to a single phenomenological material “soft tissue”. The
resultant finite element model successfully predicted the
non-linear stiffness of the wrist. The second outcome of
this research was the determination of the first-order
Ogden material parameters of the wrist tissue. While tissue
within the upper arm and fingers have been reported, the
behaviour of the wrist has been missing from the literature.
Finally, this research investigated different methods to
simplify anatomical models to decrease computation time.
It was shown that the geometry under the area of contact
provides most of the structure or stiffness. Simplifications
that reduce the non-adjacent geometry were shown to have
good efficiency with minimal changes to accuracy. Under
similar loading conditions, these techniques can be used
to simplify other composite structures, such as the leg or
fingers.

Future work in modelling anatomy can investigate how
different configurations of the wrist may affect modelling.
Alternatively, other anatomy can be modelled. One specific
area of interest is using DIC from an ultrasound feed with
a model to generate force-feedback. With this technology,
the applied force can be accurately estimated for tele-
ultrasound, even on commercially available devices that do
not have a load cell. Finally, the stiffness characteristics
from a large sample should be considered to obtain a
statistical analysis of the material parameters and develop
techniques to model a range of people.

A. Appendices

A.1 Nelder–Mead Optimisation Procedure

A curve-fitting procedure was used to determine which
material parameters can be used with the finite element
model to best fit the experimental data. The Nelder–Mead
optimisation method was chosen because it is a numerical
method and thus it can handle discrete data-points instead
of a function [40]. This algorithm can be used for multi-
variable functions of two or more parameters. The goal is
to match the simulated results to the experimental results;
therefore, the objective is to minimise the error between
the simulated material and the experimental data. RMSE
is used to rank different pairs of material properties—the
lower, the better.
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Table A1
Initial Points for Material Optimisation Using the

Nelder–Mead Algorithm

ID µ (kPa) α1 RMSE (lb-f), location 1

Skin 1 [27] 5.07 9.14 3.54

Skin 2b [28] 39.8 35.5 4985.73

Skin 5 [31] 0.13 26.0 8.34

Figure A1. Graphical representation of the Nelder–Mead
optimisation method where i1, i2, and i3 are the initial
points of the simplex. Points 1, 2, 3, 4 correspond to the
proposed points after reflection, extension, contraction of
the reflected point, and contraction of the initial point
respectively. Points 5a and 5b are the proposed points after
shrinking.

The Nelder–Mead algorithm creates a simplex of n + 1
points, where n is the number of variables being optimised.
For the material optimisation with two parameters, a
simplex of three initial points is needed. Based on the
material parameters from the literature found in Table 1,
the initial points were chosen as given in Table A1.

The next step is to follow the Nelder–Mead algorithm
to find better points. Following this procedure, in most
iterations, one of the points of the simplex will be replaced
with a better point. However, these improvements will get
smaller as the simplex approaches the minima and gets
smaller in size.

The generalised algorithm has four operations to gen-
erate the next point in the simplex: reflection, extension,
contraction, and shrinking. A visual representation of the
next generated point according to the algorithm is shown
in Fig. A1.

Without an end condition, this iteration may continue
indefinitely. Therefore, it is important to choose an end-
condition which will find a balance between precision and
efficiency. For this research, two end-conditions were given
which must both be met:

Figure A2. Points on the Nelder–Mead simplex converging
over iterations for location 1: (a) Mu and (b) Alpha.

1. The standard deviation of the RMSE across the three
points must be less than 1% of the mean for five
consecutive iterations.

2. The standard deviation of the final parameters across
the three points must be less than 10% of the mean.
This combination on end conditions ensure that the

optimisation has truly converged and that the final
parameters are known with a reasonable level of certainty.
The result of the optimisation procedure can be seen in
Fig. A2 below, plotting the convergence for each material
parameters across iterations.

A.2 Supplemental Figures

Figure 15 showed the effects of different simplification steps
for location 1. However, for a more complete view, Figs.
A3 and A4 have been added to this appendix. These two
figures show the effects of simplification for location 2 and
location 3, respectively.
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Figure A3. Force–displacement curves across iterations,
location 2.

Figure A4. Force–displacement curves across iterations,
location 3.
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