Create New Account
Login
Search or Buy Articles
Browse Journals
Browse Proceedings
Subscriptions
Submit your Paper
Submission Information
Journal Review
Recommend to Your Library
Call for Papers
DYNAMIC ANALYSIS AND FPGA IMPLEMENTATION OF FRACTIONAL-ORDER MODEL OF A 5D HOMOPOLAR DISC DYNAMO
Zhouchao Wei, Yingying Li, and Karthikeyan Rajagopal
References
[1] G.A. Leonov and N.V. Kuznetsov, Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractors in Chua circuits, International Journal of Bifurcation and Chaos, 23, 2013, 1330002.
[2] G.A. Leonov, N.V. Kuznetsov, and T.N. Mokaev, Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective ﬂuid motion, European Physical Journal Special Topics, 224, 2015, 1421–1458.
[3] G.A. Leonov, N.V. Kuznetsov, and T.N. Mokaev, Homoclinic orbit and hidden attractor in the Lorenz-like system describing the ﬂuid convection motion in the rotating cavity, Communications in Nonlinear Science and Numerical Simulation, 28, 2015, 166–174.
[4] Z.C. Wei, I. Moroz, Z. Wang, J.C. Sprott, and T. Kapitaniak, Dynamics at inﬁnity, degenerate Hopf and zero-Hopf bifurcation for Kingni-Jafari system with hidden attractors, International Journal of Bifurcation and Chaos, 26, 2016, 1650125.
[5] Z.C. Wei, W. Zhang, Z. Wang, and M.H. Yao, Hidden attractors and dynamical behaviors in an extended Rikitake system, International Journal of Bifurcation and Chaos, 25, 2015, 1550028.
[6] T. Kapitaniak and G.A. Leonov, Multistability: Uncovering hidden attractors, European Physical Journal Special Topics, 224, 2015, 1405–1408.
[7] Z. Wang, A. Akgul, V.T. Pham, and S. Jafari, Chaos-based application of a novel no-equilibrium chaotic system with coexisting attractors, Nonlinear Dynamics, 89, 2017, 1877– 1887.
[8] E. Tlelo-Cuautle, L.G. de la Fraga, V.T. Pham, V. Volos, and S. Jafari, Dynamics, FPGA realization and application of a chaotic system with an inﬁnite number of equilibrium points, Nonlinear Dynamics, 89, 2017, 1129–1139.
[9] J.C. Sprott, S. Jafari, A.J.M. Khalaf, and T. Kapitaniak, Megastability: Coexistence of a countable inﬁnity of nested attractors in a periodically-forced oscillator with spatially-periodic damping, European Physical Journal Special Topics, 226, 2017, 1979–1985.
[10] S. Jafari, V.T. Pham, and T. Kapitaniak, Multiscroll chaotic sea obtained from a simple 3D system without equilibrium, International Journal of Bifurcation and Chaos, 26, 2016, 1650031.
[11] C.B. Li, W. Hu, J.C. Sprott, and X. Wang, Multistability in symmetric chaotic systems, European Physical Journal Special Topics, 224, 2015, 1493–1506.
[12] C.B. Li, J.C. Sprott, and Y. Mei, An inﬁnite 2D lattice of strange attractors, Nonlinear Dynamics, 89, 2017, 2629–2639.
[13] B.C. Bao, H. Bao, N. Wang, M. Chen, and Q. Xu, Hidden extreme multistability in memristive hyperchaotic system, Chaos Solitons and Fractals, 94, 2017, 102–111.
[14] C.B. Li and J.C. Sprott, An inﬁnite 3D quasiperiodic lattice of chaotic attractors, Physics Letters A, 382, 2018, 581–587.
[15] Z.C. Wei, Dynamical behaviors of a chaotic system with no equilibria, Physics Letters A, 376, 2011, 102–108.
[16] Z.C. Wei, R.R. Wang, and A.P. Liu, A new ﬁnding of the existence of hidden hyperchaotic attractors with no equilibria, Mathematics and Computers in Simulation, 100, 2014, 13–23.
[17] V.-T. Pham, C. Volos, S. Jafari, Z.C. Wei, and X. Wang, Constructing a novel no-equilibrium chaotic system, International Journal of Bifurcation and Chaos, 24, 2014, 1450073.
[18] M. Molaie, S. Jafari, J.C. Sprott, and S.M.R.H. Golpayegani, Simple chaotic ﬂows with one stable equilibrium, International Journal of Bifurcation and Chaos, 23, 2013, 1350188.
[19] Z.C. Wei and I. Pehlivan, Chaos, coexisting attractors, and circuit design of the generalized Sprott C system with only two stable equilibria, Optoelectronics and Advanced Materials-Rapid Communications, 6, 2012, 742–745.
[20] V.-T. Pham, S. Jafari, C. Volos, S. Vaidyanathan, and T. Kapitaniak, A chaotic system with inﬁnite equilibria located on a piecewise linear curve, Optik-International Journal for Light and Electron Optics, 127, 2016, 9111–9117.
[21] S. Jafari, J.C. Sprott, and M. Molaie, A simple chaotic ﬂow with a plane of equilibria, International Journal of Bifurcation and Chaos, 26, 2016, 1650098.
[22] S. Jafari, J.C. Sprott, V.-T. Pham, C. Volos, and C.B. Li, Simple chaotic 3D ﬂows with surfaces of equilibria, Nonlinear Dynamics, 86, 2016, 1349–1358.
[23] Z.C. Wei, I. Moroz, J.C. Sprott, A. Akgul, and W. Zhang, Hidden hyperchaos and electronic circuit application in a 5D self-exciting homopolar disc dynamo, Chaos, 27(3), 2017, 033101.
[24] D. Baleanu, K. Diethelm, E. Scalas, and J.J. Trujillo, Fractional calculus: Models and numerical methods, World Scientiﬁc, Singapore, 2014.
[25] Y. Zhou, Basic theory of fractional differential equations, World Scientiﬁc, Singapore, 2014.
[26] K. Diethelm, The analysis of fractional differential equations (Berlin: Springer, 2010). 63
[27] D. Dudkowski, S. Jafari, T. Kapitaniak, N.V. Kuznetsov, G.A. Leonov, and A. Prasad, Hidden attractors in dynamical systems, Physics Reports, 637, 2016, 1–50.
[28] K. Rajagopal, A. Karthikeyan, and A. Srinivasan, FPGA implementation of novel fractional order chaotic system with two equilibriums and no equilibrium and its adaptive sliding mode synchronization, Nonlinear Dynamics, 87, 2017, 2281– 2304.
[29] E. Tlelo-Cuautle, V.H. Carbajal-Gomez, and P.J. Obeso-Rodelo, FPGA realization of a chaotic communication system applied to image processing, Nonlinear Dynamics, 82, 2015, 1879–1892.
[30] E. Tlelo-Cuautle, A.D. Pano-Azucena, and J.J. Rangel-Magdaleno, Generating a 50-scroll chaotic attractor at 66 MHz by using FPGAs, Nonlinear Dynamics, 85, 2016, 2143–2157.
[31] E. Tlelo-Cuautle, J.J. Rangel-Magdaleno, A.D. Pano-Azucena, P.J. Obeso-Rodelo, and J.C. Nunez-Perez, FPGA realization of multi-scroll chaotic oscillators, Communications in Nonlinear Science and Numerical Simulation, 27, 2015, 66–80.
[32] Q.X. Wang, S.M. Yu, C.Q. Li, and J.H. Lu, Theoretical design and FPGA-based implementation of high-dimensional digital domain chaotic systems with random bits iterative update, IEEE Transactions on Circuits and Systems I: Regular Papers, 63, 2016, 401–412.
[33] K. Rajagopal, G. Laarem, A. Karthikeyan, A. Srinivasan, and G. Adam, Fractional order memristor no equilibrium chaotic system with its adaptive sliding mode synchronization and genetically optimized fractional order PID synchronization, Complexity, 2017, 2017, 1892618
[34] H.K. Moffatt, A self-consistent treatment of simple dynamo systems, Geophysical & Astrophysical Fluid Dynamics, 14, 1979, 147–166.
[35] J.H. Bao and D.D. Chen, Coexisting hidden attractors in a 4D segmented disc dynamo with one stable equilibrium or a line equilibrium, Chinese Physics B, 26, 2017, 080201.
[36] E.Z. Dong, Z.H. Liang, and S.Z. Du, Topological horseshoe analysis on a four-wing chaotic attractor and its FPGA implement, Nonlinear Dynamic, 83, 2016, 623–630.
[37] V. Rashtchi and M. Nourazar, FPGA implementation of a real-time weak signal detector using a duﬃng oscillator, Circuits, Systems, and Signal Processing, 34, 2015, 3101–3119.
[38] Y.M. Xu, L.D. Wang, and S.K. Duan, A memristor-based chaotic system and its ﬁeld programmable gate array implementation, Acta Physica Sinica, 65(12), 2016, 120503.
[39] K. Rajagopal, L. Guessas, S. Vaidyanathan, A. Karthikeyan, and A. Srinivasan, Dynamical analysis and FIGA implementation of a novel hyperchaotic system and its synchronization using adaptive sliding mode control and genetically optimized PID control, Mathematical Problems in Engineering, 2017, 2017, 7307452.
[40] C.S. Shieh, FPGA chip with fuzzy PWM control for synchronizing a chaotic system, Control and Intelligent Systems, 40, 2012, 144–150.
[41] A. Ruzitalab, M.H. Farahi, and G.H. Erjaee, Synchronization of multiple chaotic systems using a nonlinear grouping feedback function method, Control and Intelligent Systems, 46, 2018, 1–6.
Important Links:
Abstract
DOI:
10.2316/J.2020.201-0034
From Journal
(201) Mechatronic Systems and Control - 2020
Go Back