DESIGN AND SYNTHESIS OF COMPLIANT MECHANISM FOR 3D MICRO-GRASPING

Mohammad Mayyas and Naveen Kumar

References

  1. [1] Y.-C. Tsai, S.H. Lei, and H. Sudin, Design and analysis of planarcompliant microgripper based on kinematic approach, Journalof Micromechanics and Microengineering, 15(1), 2004, 143.
  2. [2] J.L. Dearden, Design and analysis of two compliant mechanism-based instruments for minimally invasive surgery, (Doctoraldissertation, Masters thesis, Brigham Young University, Provo,UT), 2016.9
  3. [3] M. Mayyas and H. Stephanou, Electrothermoelastic modelingof MEMS gripper, Microsystem Technologies, 15(4), 2009,637–646.
  4. [4] M. Mayyas, P. Zhang, W.H. Lee, P. Shiakolas, and D. Popa,Design tradeoffs for electrothermal microgrippers, Proceedings– IEEE International Conference on Robotics and Automation,Roma, Italy, 2007, pp. 907.
  5. [5] M.J.F. Zeman, E.V. Bordatchev, and G.K. Knopf, Design,kinematic modeling and performance testing of an electro-thermally driven microgripper for micromanipulation appli-cations, Journal of Micromechanics and Microengineering,16(8), 2006, 1540.
  6. [6] P.J. Swanson, R.R. Burridge, and D.E. Koditschek, Globalasymptotic stability of a passive juggler: A parts feedingstrategy, Proceedings of 1995 IEEE International Conferenceon Robotics and Automation, Nagoya, Japan, Vol. 2, 1995,1983–1988. doi: 10.1109/ROBOT.1995.525554.
  7. [7] M.A. Mayyas, Methodologies for automated microassembly,Ph.D. thesis, The University of Texas at Arlington, 2008.
  8. [8] S. Allegro, Automatic microassembly by means of visuallyguided micromanipulation (No. THESIS). EPFL. 1998.
  9. [9] K.B. Yesin and B.J. Nelson, A CAD model based trackingsystem for visually guided microassembly, Robotica, 23(4),2005, 409–418.
  10. [10] M. Power, A.J. Thompson, S. Anastasova, and G.-Z. Yang, Amonolithic force-sensitive 3D microgripper fabricated on thetip of an optical fiber using 2-photon polymerization, Small,14(16), 2018, 1703964.
  11. [11] G. Hao, H. Li, A. Nayak, and S. Caro, Design of a compliantgripper with multimode jaws, Journal of Mechanisms andRobotics, 10(3), 2018, 031005.
  12. [12] Z. Wu and Q. Xu, Survey on recent designs of compliantmicro-/nano-positioning stages, Actuators, 7(1), 2018, 5.
  13. [13] Y. Zhang, Y. Yu, Z. Zhang, and X. Zhang, Structure anddesign of microgrippers: A survey, 2017 2nd InternationalConference on Cybernetics, Robotics and Control (CRC), July2017, 139–143.
  14. [14] M. Doria and L. Birglen, Design of an underactuated compliantgripper for surgery using nitinol, Journal of Medical Devices,3(011007), 2009.
  15. [15] P.-L. Chang, I.-T. Chi, N.D.K. Tran, and D.-A. Wang, Designand modeling of a compliant gripper with parallel movementof jaws, Mechanism and Machine Theory, 152, 2020, 103942.
  16. [16] Y. Li, Y. Chen, Y. Yang, and Y. Wei, Passive particle jammingand its stiffening of soft robotic grippers, IEEE Transactionson Robotics, 33(2), 2017, 446–455.
  17. [17] X. Li, W. Chen, W. Lin, and K.H. Low, A variable stiffnessrobotic gripper based on structure-controlled principle, IEEETransactions on Automation Science and Engineering, 15(3),2017, 1104–1113.
  18. [18] L.M. Yeakley, Compliant gripper mechanism for robotic mag-netic tape cartridge handling system, Google Patents, patentno.: US5242259A, 1993.
  19. [19] S. Kota, K.J. Lu, Z. Kreiner, B. Trease, J. Arenas, J. Geiger, De-sign and application of compliant mechanisms for surgical tools,Journal of Biomechanical Engineering, 127(6), 2005, 981–989.
  20. [20] J. Shintake, V. Cacucciolo, D. Floreano, and H. Shea, Softrobotic grippers, Advanced Materials, 30(29), 2018, 1707035.
  21. [21] M. Baril, T. Laliberte, C. Gosselin, and F. Routhier, Onthe design of a mechanically programmable underactuatedanthropomorphic prosthetic gripper, Journal of MechanicalDesign, 135(12), 2013, 121008.
  22. [22] J.D. Beroz, S. Awtar, M. Bedewy, T. Sameh, and A.J. Hart,Compliant microgripper with parallel straight-line jaw tra-jectory for nanostructure manipulation, Proceedings of 26thAmerican Society of Precision Engineering Annual Meeting,Denver, CO, 13–18 2011, 90–93.
  23. [23] M. Lofroth and E. Avci, Development of a novel modu-lar compliant gripper for manipulation of micro objects,Micromachines, 10(5), 2019, 313.
  24. [24] S. Iqbal and A. Malik, A review on MEMS based microdisplacement amplification mechanisms, Sensors Actuators A:Physical, 300, 2019, 111666.
  25. [25] M. Ling, L.L. Howell, J. Cao, and G. Chen, Kinetostatic anddynamic modeling of flexure-based compliant mechanisms: Asurvey, Applied Mechanics Reviews, 72(3), 2020.
  26. [26] C.-H. Liu, G.-F. Huang, C.-H. Chiu, and T.-Y. Pai, Topologysynthesis and optimal design of an adaptive compliant gripperto maximize output displacement, Journal of Intelligent andRobotic Systems, 90(3–4), 2018, 287–304.
  27. [27] C.-C. Lan and Y.-J. Cheng, Distributed shape optimizationof compliant mechanisms using intrinsic functions, Journal ofMechanical Design, 130(7), 2008, p. 072304.
  28. [28] M. Heule, S. Vuillemin, and L.J. Gauckler, Powder-basedceramic meso-and microscale fabrication processes, AdvancedMaterials, 15(15), 2003, 1237–1245.
  29. [29] A. Ananthanarayanan, F. Bussemer, S.K. Gupta, and J.P.Desai, Fabrication of highly articulated miniature snake robotstructures using in-mold assembly of compliant joints, SpringerTracts in Advanced Robotics, 79, 2014, 799–809.
  30. [30] M. E. Aguirre, G.R. Hayes, R.A. Meirom, M.I. Frecker, C.L.Muhlstein, and J.H. Adair, Optimal design and fabricationof narrow-gauge compliant forceps, Journal of MechanicalDesign, 133(8), 2011.
  31. [31] Y. Fu and H. Du, Fabrication of micromachined TiNi-basedmicrogripper with compliant structure, Proceedings SPIE5116, Smart Sensors, Actuators, and MEMS, Gran Canaria,Canary Islands, Spain, 2003, 38–47.
  32. [32] C. Culmone, P.W.J. Henselmans, R.I.B. van Starkenburg, andP. Breedveld, Exploring non-assembly 3D printing for novelcompliant surgical devices, PLoS One, 15(5), 2020, e0232952.
  33. [33] K. Doi, Y. Nakayama, and T. Matsuda, Novel compliant andtissue-permeable microporous polyurethane vascular prosthesisfabricated using an excimer laser ablation technique, Journalof Biomedical Materials Research, 31(1), 1996, 27–33.
  34. [34] G.R. Hayes, M.I. Frecker, and J.H. Adair, Fabrication ofcompliant mechanisms on the mesoscale, Mechanical Sciences,2(1), 2011, 129–137.
  35. [35] C. Tawk, A. Gillett, M. In Het Panhuis, G.M. Spinks, andG. Alici, A 3D-printed omni-purpose soft gripper, IEEETransactions on Robotics, 35(5), 2019, 1268–1275.
  36. [36] C. Tawk, Y. Gao, R. Mutlu, and G. Alici, Fully 3D printedmonolithic soft gripper with high conformal grasping capabil-ity, 2019 IEEE/ASME International Conference on AdvancedIntelligent Mechatronics (AIM), Hong Kong, China, 2019,1139–1144.
  37. [37] K. Lee, Y. Wang, and C. Zheng, TWISTER hand: underactu-ated robotic gripper inspired by origami twisted tower, IEEETransactions on Robotics, 36(2), 2020, 488–500.
  38. [38] F. Hu, L. Lyu, and Y. He, A 3D printed paper-based thermallydriven soft robotic gripper inspired by cabbage, InternationalJournal of Precision Engineering and Manufacturing, 20(11),2019, 1915–1928.
  39. [39] P. Hemthavy, K. Kudo, K. Kawano, K. Takahashi, andS. Saito, Compliant bipolar electrostatic gripper using 3D-printed-layered elastic probes, Engineering Research Express,2(1), 2020.
  40. [40] M. Zhu, Y. Mori, T. Wakayama, A. Wada, and S. Kawamura,A fully multi-material three-dimensional printed soft gripperwith variable stiffness for robust grasping, Soft Robotics, 6(4),2019, 507–519.
  41. [41] W. McGuire, Matrix Structural Analysis, Wiley, New York(1979).
  42. [42] R. Fearing, Simplified grasping and manipulation with dex-trous robot hands, IEEE Journal on Robotics and Automation,2(4), 1986, 88–195.
  43. [43] Y.-H. Liu, Qualitative test and force optimization of 3-Dfrictional form-closure grasps using linear programming, IEEETransactions on Robotics and Automation, 15(1), 1999,163–173.
  44. [44] Y. Li and I. Kao, A review of modeling of soft-contact fingersand stiffness control for dextrous manipulation in robotics,Proceedings 2001 ICRA. IEEE International Conference onRobotics and Automation (Cat. No. 01CH37164), Vol. 3, 2001,3055–3060.
  45. [45] N. Xydas and I. Kao, Modeling of contact mechanics andfriction limit surfaces for soft fingers in robotics, with exper-imental results, International Journal of Robotics Research,18(9), 1999, 941–950.10

Important Links:

Go Back