RESEARCH ON RUL OF LI-ION BATTERY BASED ON IMPROVED AR-PF MODEL

Ming Yin

References

  1. [1] A.S. Sarathi Vasan, Diagnostics and prognostics method foranalog electronic circuits, IEEE Transactions on IndustrialElectronics, 60(11), 2013, 5277–5291.
  2. [2] T. Kuremoto, S. Kimura, K. Kobayashi, et al., Time series fore-casting using a deep belief network with restricted Boltzmannmachines, Neurocomputing, 137(15), 2014, 47–56.
  3. [3] A.E. Elsaid, B. Wild, J. Higgins, et al., Using LSTM recurrentneural networks to predict excess vibration events in aircraftengines, 2016 IEEE 12th International Conf. on e-Science(e-Science), IEEE Computer Society, NewYork, United States,2016.
  4. [4] M. Rahaman, W. Mu, J. Odqvist, et al., Machine learning topredict the martensite start temperature in steels, Metallurgicaland Materials Transactions A, 50(4), 2019, 2081–2091.
  5. [5] W. He, N. Williard, M. Osterman, and M. Patch, Remaininguseful performance analysis of batteries, IEEE Conf. on Prog-nostics and Health Management, Beijing, China, 2011, 157–168.
  6. [6] S. Tippmann, R.D. Walpe, L. Balbos, et al., Low-temperaturecharging of Li-ion cells part I. Electrochemical modeling andexperimental investigation of degradation behavior, Journalof Power Sources, 252, 2014, 305–316.
  7. [7] W. He, D.N. Williar, M. Oster Man, et al., Prognostics ofLi-ion batteries based on Dempster–Shafer theory and theBayesian Monte Carlo method, Journal of Power Sources,196(23), 2011, 10314–10321.
  8. [8] M.B. Pinson and M.Z. Bazant, Theory of SEI formation inrechargeable batteries: Capacity fade, accelerated aging andlifetime prediction, Journal of the Electrochemical Society,160(2), 2012, 243–250.
  9. [9] S. Kayalvizhi and D.M. Vinod Kumar, Planning of autonomousmicrogrid with energy storage using grid-based multi-objectiveharmony search algorithm, International Journal of Power andEnergy Systems, 37(1), 2017, 815–826. doi: 10.2316/Journal.203.2017.1.203-6276.
  10. [10] V. Shetty, D. Das, M. Pecht, D. Hiemstra, and S. Martin, Re-maining life assessment of shuttle remote manipulator systemend effector, Proc. of the 22nd Space Simulation Conf., Paris,France, 2002, 1121–1135.
  11. [11] J. Gu and M. Pecht, Prognostics implementation of electronicsunder vibration loading, Microelectronics Reliability, 47(12),2007, 1849–1856.
  12. [12] J.Z. Sikorska, M. Hodkiewicz, and L. Ma, Prognostic mod-elling options for remaining useful life estimation by indus-try, Mechanical Systems and Signal Processing, 25(5), 2011,1803–1836.
  13. [13] B.P. Gibbs, Advanced Kalman filtering, least-squares andmodeling (Hoboken, NJ: Wiley, 2011).
  14. [14] B. Saha, K. Goebel, and J. Christophersen, Comparison ofprognostic algorithms for estimating remaining useful life ofbatteries, Transactions of the Institute of Measurement andControl, 31(3), 2009, 293–308.
  15. [15] D. Mestriner and M. Invernizzi, Analysis of lighting effects onpower plant connection, International Journal of Power andEnergy Systems, 38(2), 2018, 526–535. doi: 10.2316/Journal.203.2018.2.203-0011.
  16. [16] M. Yin, Y. Xu, X. Ye, et al., Fault prognostic based on AR-LSSVR for electrolytic capacitor, Technical Gazette, 24(3),2017, 782–789.

Important Links:

Go Back