THERMO-MECHANICAL BEHAVIOUR OF SMA WIRE EMBEDDED PDMS ACTUATOR TOWARDS SOFT ROBOTICS APPLICATIONS

M. Muralidharan, K. Aishwarya, R. Mithun, and I.A. Palani

References

  1. [1] H. Lipson, “Challenges and opportunities for design, simula-tion, and fabrication of soft robots, Soft Robotics, 1(1), 2014,21–27.
  2. [2] H. Banerjee, Z.T.H. Tse, and H. Ren, Soft robotics withcompliance and adaptation for biomedical applications andforthcoming challenges, International Journal of Robotics andAutomation, 2018, doi: 10.2316/Journal.206.2018.1.206-4981.
  3. [3] J. Zhang, H. Guo, T. Wang, and J. Hong, The design andmotion analysis of a pneumatic omnidirectional soft robot,International Journal of Robotics and Automation, 2017, doi:10.2316/Journal.206.2017.6.206-4908.
  4. [4] S. Coyle, C. Majidi, P. LeDuc, and K. Jimmy Hsia, Bio-inspired soft robotics: Material selection, actuation, and design,Extreme Mechanics Letters, 22, 2018, 51–59.
  5. [5] J.M. Jani, M. Leary, A. Subic, and M.A. Gibson, A review ofshape memory alloy research, applications and opportunities,Materials and Design, 56, 2014, 1078–1113.
  6. [6] A. Raj and A. Thakur, Fish-inspired robots: Design, sensing,actuation, and autonomy – A review of research. Bioinspiration& Biomimetics, 11, 2016, 031001.
  7. [7] S. Daroogheha and T. Radhakrishnan, An analysis for amini robot gripper using SMA springs, International Journalof Robotics and Automation, 2007, doi: 10.2316/Journal.206.2007.3.206-3011.
  8. [8] B. Wang, Y. Jin, M. Cheng, and W. Zhou, Model simulation andposition control experiments of pneumatic muscle with shapememory alloy braided sleeve, International Journal of Robotics8and Automation, 2013, doi: 10.2316/Journal.206.2013.1.206-3747.
  9. [9] S. Seok, C.D. Onal, K.-J. Cho, R.J. Wood, D. Rus, and S.Kim, Meshworm: A peristaltic soft robot with antagonisticnickel titanium coil actuators, IEEE/ASME Transactions onMechatronics, 18(5), 2013, 1485–1497.
  10. [10] H. Rodrigue, W. Wang, D.-R. Kim, and S.-H. Ahn, Curvedshape memory alloy-based soft actuators and application tosoft gripper, Composite Structures, 176, 2017, 398–406.
  11. [11] J.-E. Shim, Y.-J. Quan, W. Wang, H. Rodrigue, S.-H. Song,and S.-H. Ahn, A smart soft actuator using a single shapememory alloy for twisting actuation, Smart Materials andStructures, 24, 2015, 125033 (10 pp).
  12. [12] W. Wang, J.-Y. Lee, H. Rodrigue, S.-H. Song, W.-S. Chu, andS.-H. Ahn, Locomotion of inchworm-inspired robot made ofsmart soft composite (SSC), Bioinspiration & Biomimetics, 9,2014, 046006 (10 pp).
  13. [13] H. Rodrigue, B. Bhandari, M.-W. Han, and S.-H. Ahn, Ashape memory alloy-based soft morphing actuator capable ofpure twisting motion, Journal of Intelligent Material Systemsand Structures, 26(9), 2015, 1071–1078.
  14. [14] H. Rodrigue, W. Wei, B. Bhandari, and S.-H. Ahn, Fabrica-tion of wrist-like SMA-based actuator by double smart softcomposite casting, Smart Materials and Structures, 24, 2015,125003 (10 pp).
  15. [15] T. Sinn and R. Barrett, Design, manufacturing and test of ahigh lift secondary flight control surface with shape memoryalloy post-buckled precompressed actuators, Actuators, 4, 2015,156–171;
  16. [16] H. Rodrigue, W. Wang, B. Bhandari, M.-W. Han, and S.-H.Ahn, SMA-based smart soft composite structure capable ofmultiple modes of actuation, Composites Part B: Engineering,82, 2015, 152–158.
  17. [17] W. Huang, On the selection of shape memory alloys foractuators, Materials & Design, 23(1), 2002, 11–19.
  18. [18] K. Otsuka and C.M. Wayman, Shape memory materials,Cambridge University Press, 16(1), 1999, 1–162.
  19. [19] T.W. Duerig and A.R. Pelton, Ti–Ni shape memory alloys,Materials Properties Handbook: Titanium Alloys, ASM Inter-national, 1994, 1035–1048.

Important Links:

Go Back