APPLICATION OF ROBUST H ∞ STATE FEEDBACK CONTROLLER IN SATELLITE FORMATION FLYING

Mohammad R. Izadi, Ali Shakib, and Saman Saki

References

  1. [1] G.P. Liu and S. Zhang, A survey on formation control of smallsatellites, Proceedings of the IEEE, 106 (3), 2018, 440–457.117
  2. [2] S. Bandyopadhyay, G.P. Subramanian, R. Foust, D. Morgan, S.-J. Chung, and F. Hadaegh, A review of impending small satelliteformation flying missions, 53rd AIAA Aerospace SciencesMeeting, Kissimmee, Florida, 2015, 1623.
  3. [3] T. Wahl and K. Howell, Autonomous guidance algorithmsfor formation reconfiguration maneuvers, AAS/AIAA Astro-dynamics Specialist Conference, Stevenson, WA, 2017.
  4. [4] H. Sun, H. Zhao, K. Huang, S. Zhen, and Y.-H. Chen, Adaptiverobust constraint-following control for satellite formation flyingwith system uncertainty, Journal of Guidance, Control, andDynamics, 40(6), 2017, 1492–1502.
  5. [5] D. Wang, B. Wu, and E.K. Poh, Satellite formation flying,Intelligent systems, control and automation: science and en-gineering, Vol. 87, (Singapore: Springer, 2017).
  6. [6] W.H. Clohessy and R.S. Wiltshire, Terminal guidance systemfor satellite rendezvous, Journal of the Aerospace Sciences,27(9), 1960, 653–658.
  7. [7] G. Inalhan, M. Tillerson, and J.P. How, Relative dynamics andcontrol of spacecraft formations in eccentric orbits, Journal ofGuidance, Control, and Dynamics, 25(1), 2002, 48–59.
  8. [8] W.J. Larson and J.R. Wertz, Space mission analysis anddesign, No. DOE/NE/32145-T1 (Torrance, CA: Microcosm,Inc., 1992).
  9. [9] T. Reid and A.K. Misra, Formation flight of satellites in thepresence of atmospheric drag, Journal of Aerospace Engineer-ing, 3(1), 2011, 64.
  10. [10] L. Cao and A.K. Misra., Linearized J2 and atmospheric dragmodel for satellite relative motion with small eccentricity,Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 229(14), 2015, 2718–2736.
  11. [11] Y. Xu, N. Fitz-Coy, R. Lind, and A. Tatsch, μ Control forsatellites formation flying, Journal of Aerospace Engineering,20(1), 2007, 10–21.
  12. [12] P. Gurfil, M. Idan, and N.J. Kasdin, Adaptive neural controlof deep-space formation flying, Journal of Guidance, Control,and Dynamics, 26(3), 2003, 491–501.
  13. [13] T. Guo, H. Wang, Y. Liu, M. Li, and Y. Wang, Vision-basedmobile robot leader–follower control using model predictivecontrol, International Journal of Robotics and Automation,34(5), 2019, 458–470.
  14. [14] W. Zhang, Z. Liang, X. Sun, Y. Teng, X. Song, and Z.Yan, Path following control for an under-actuated UUV basedon adaptive sliding mode control, International Journal ofRobotics and Automation, 32(5), 2017, 458–470.
  15. [15] C. Wei, S.-Y. Park, and C. Park, Optimal H∞ robust outputfeedback control for satellite formation in arbitrary ellipticalreference orbits, Advances in Space Research, 54(6), 2014,969–989.
  16. [16] G. Franzini and M. Innocenti, Nonlinear H-infinity controlof relative motion in space via the state-dependent Riccatiequations, 2015 54th IEEE Conference on Decision and Control(CDC), IEEE, 2015, 3409–3414.
  17. [17] H. Gao, X. Yang, and P. Shi, Multi-objective robust H infinitycontrol of spacecraft rendezvous, IEEE Transactions on ControlSystems Technology, 17(4), 2009, 794–802.
  18. [18] S.-N. Wu, W.-Y. Zhou, S.-J. Tan, and G.-Q. Wu, Robustcontrol for spacecraft rendezvous with a noncooperative target,The Scientific World Journal, 2013, 2013, 579703–579703.
  19. [19] K. Zhang and G.-R. Duan, Robust H∞ dynamic outputfeedback control for spacecraft rendezvous with poles and inputconstraint, International Journal of Systems Science, 48(5),2017, 1022–1034.
  20. [20] Y.-R. Hu and A. Ng, Robust control of spacecraft formationflying, Journal of Aerospace Engineering, 20(4), 2007, 209–214.
  21. [21] T. Hu, A.R. Teel, and L. Zaccarian, Anti-windup synthesisfor linear control systems with input saturation: Achievingregional, nonlinear performance, Automatica, 44(2), 2008, 512–519.
  22. [22] A.-M. Zou and K.D. Kumar, Adaptive output feedback controlof spacecraft formation flying using Chebyshev neural networks,Journal of Aerospace Engineering, 24(3), 2011, 361–372.
  23. [23] Y.-H. Lim and H.-S. Ahn, Relative position keeping in satelliteformation flying with input saturation, Journal of the FranklinInstitute, 351(2), 2014, 1112–1129.
  24. [24] Y.-H. Lim, H.-S. Ahn, and D.-W. Chung, Satellite formationflying with input saturation: An LMI approach, 2011 IEEEInternational Symposium on Intelligent Control, IEEE, 2011,810–815.
  25. [25] S.S. Vaddi, S.R. Vadali, and K.T. Alfriend, Formation flying:Accommodating nonlinearity and eccentricity perturbations,Journal of Guidance, Control, and Dynamics, 26(2), 2003,214–223.
  26. [26] J.L. Junkins and H. Schaub, Analytical mechanics of spacesystems, American Institute of Aeronautics and Astronautics,Reston, VA, 2009.
  27. [27] M.J. Sidi, Spacecraft dynamics and control: A practical engi-neering approach, Vol. 7 (Cambridge, UK: Cambridge Univer-sity Press, 1997).
  28. [28] R. Sherrill, Dynamics and control of satellite relative mo-tion in elliptic orbits using Lyapunov–Floquet theory, Ph.D.Dissertation, 2013.
  29. [29] M.C. De Oliveira, Fundamentals of linear control (Cambridge,UK: Cambridge University Press, 2017).
  30. [30] E. Fridman, Introduction to time-delay systems: Analysis andcontrol (Switzerland: Springer, 2014).

Important Links:

Go Back