MLC-SLAM: MASK LOOP CLOSING FOR MONOCULAR SLAM

Bo Han∗ and Li Xu∗

References

  1. [1] R. Mur-Artal, J.M.M. Montiel, and J.D. Tardos, ORB-SLAM: A versatile and accurate monocular SLAM system, IEEE Transactions on Robotics, 31(5), 2015, 1147–1163.
  2. [2] C. Forster, M. Pizzoli, and D. Scaramuzza, SVO: Fast semidirect monocular visual odometry, 2014 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, Hong Kong, China, 2014), 15–22.
  3. [3] J. Engel, T. Schöps, and D. Cremers, LSD-SLAM: Large-scale direct monocular SLAM, European Conference on Computer vision (Springer, Zurich, Switzerland, 2014), 834–849.
  4. [4] J. Engel, V. Koltun, and D. Cremers, Direct sparse odometry, IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(3), 2017, 611–625.
  5. [5] G. Klein and D. Murray, Parallel tracking and mapping for small AR workspaces, Proceedings of the 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality (IEEE Computer Society, Nara, Japan, 2007), 1–10.
  6. [6] Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei, Fully convolutional instance-aware semantic segmentation, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017, 2359–2367.
  7. [7] R. Mur-Artal and J.D. Tard´os, Probabilistic semi-dense mapping from highly accurate feature-based monocular SLAM, Robotics: Science and Systems, Rome, 2015.
  8. [8] S. Bu, Y. Zhao, G. Wan, K. Li, G. Cheng, and Z. Liu, Semidirect tracking and mapping with RGB-D camera for MAV, Multimedia Tools and Applications, 76(3), 2017, 4445–4469.
  9. [9] P. Kim, H. Lee, and H.J. Kim, Autonomous flight with robust visual odometry under dynamic lighting conditions, Autonomous Robots, 43(6), 2019, 1605–1622.
  10. [10] N. Krombach, D. Droeschel, and S. Behnke, Combining feature-based and direct methods for semi-dense real-time stereo visual odometry, International Conference on Intelligent Autonomous Systems (Springer, Shanghai, China, 2016), 855–868.
  11. [11] D. Gálvez-L´opez and J.D. Tardos, Bags of binary words for fast place recognition in image sequences, IEEE Transactions on Robotics, 28(5), 2012, 1188–1197.
  12. [12] X. Gao, R. Wang, N. Demmel, and D. Cremers, LDSO: Direct sparse odometry with loop closure, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, Madrid, Spain, 2018), 2198–2204.
  13. [13] Z. Liang and Y. Chen, Closed-loop detection algorithm using visual words, International Journal of Robotics and Automation, 29(2), 2014, 155–161.
  14. [14] C. Chen and H. Wang, Large-scale loop-closing by fusing range data and aerial image, International Journal of Robotics and Automation, 22(2), 2007, 160–169.
  15. [15] H. Omranpour and S. Shiry, Reduced search space algorithm for simultaneous localization and mapping in mobile robots, IAES International Journal of Robotics and Automation, 1(1), 2012, 49.
  16. [16] N. Merrill and G. Huang, Lightweight unsupervised deep loop closure, Proceedings of Robotics: Science and Systems (RSS), Pittsburgh, PA, June 26–30, 2018.
  17. [17] J. Shimamura, M. Morimoto, and H. Koike, Robust vSLAM for dynamic scenes, MVA, Nara, Japan, 2011, 344–347.
  18. [18] W. Tan, H. Liu, Z. Dong, G. Zhang, and H. Bao, Robust monocular SLAM in dynamic environments, 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR) (IEEE, Adelaide, SA, Australia, 2013), 209–218.
  19. [19] N.D. Reddy, P. Singhal, V. Chari, and K.M. Krishna, Dynamic body vSLAM with semantic constraints, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2015), 1897–1904.
  20. [20] J.P. Valentin, S. Sengupta, J. Warrell, A. Shahrokni, and P.H. Torr, Mesh based semantic modelling for indoor and outdoor scenes, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, Oregon, USA, 2013, 2067–2074.
  21. [21] J. McCormac, A. Handa, A. Davison, and S. Leutenegger, Semanticfusion: Dense 3D semantic mapping with convolutional neural networks, 2017 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2017), 4628–4635.
  22. [22] K. Tateno, F. Tombari, I. Laina, and N. Navab, CNN-SLAM, Real-time dense monocular SLAM with learned depth prediction, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017, 6243–6252.
  23. [23] A. Kundu, Y. Li, F. Dellaert, F. Li, and J.M. Rehg, Joint semantic segmentation and 3D reconstruction from monocular video, European Conference on Computer Vision (Springer, 2014), 703–718.
  24. [24] T. Whelan, S. Leutenegger, R. Salas-Moreno, B. Glocker, and A. Davison, Elasticfusion: Dense SLAM without a pose graph, Robotics: Science and Systems, Rome, Italy, 2015.
  25. [25] K. Chen, J. Pang, J. Wang, Y. Xiong, X. Li, S. Sun, W. Feng, Z. Liu, J. Shi, W. Ouyang, et al., Hybrid task cascade for instance segmentation, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 2019, 4974–4983.
  26. [26] B. Han and L. Xu, A monocular SLAM system with mask loop closing, 2020 Chinese Control And Decision Conference (CCDC) (IEEE, Hefei, China, 2020), 4762–4768.
  27. [27] J. Sivic and A. Zisserman, Video Google: A text retrieval approach to object matching in videos, Proceedings Ninth IEEE International Conference on Computer Vision (IEEE, Nice, France, 2003), 1470.
  28. [28] S.H. Lee and J. Civera, Loosely-coupled semi-direct monocular SLAM, IEEE Robotics and Automation Letters, 4(2), 2018, 399–406.
  29. [29] J. Engel, V. Usenko, and D. Cremers, A photometrically calibrated benchmark for monocular visual odometry, arXiv preprint arXiv:1607.02555, 2016. 7

Important Links:

Go Back