CIOT-BASED EARLY DIAGNOSIS OF HEART FAILURE FROM MULTIMODAL DATA USING CHI-SQUARE-BASED DEEP NEURAL CLASSIFIER

A. K. S. Saranya and T. Jaya

References

  1. [1] X. Liu, P. Zhou, T. Qiu, and D. Oliver Wu, Blockchain-enabledcontextual online learning under local differential privacy forcoronary heart disease diagnosis in mobile edge computing,IEEE Journal of Biomedical and Health Informatics, 24(8),2020, 2188.
  2. [2] F. Ali, S. El-Sappagh, S.M. Riazul Islam, D. Kwak, A. Ali,M. Imran, and K.-S. Kwak, A smart healthcare monitoringsystem for heart disease prediction based on ensemble deeplearning and feature fusion, Information Fusion, 63(2020),2020, 208–222.
  3. [3] R. Venkatesh, C. Balasubramanian, and M. Kaliappan,Development of big data predictive analytics model for diseaseprediction using machine learning technique, Journal of MedicalSystems, 43(8), 2019, 1–8.
  4. [4] H. Yixue, M. Usama, J. Yang, M. Shamim Hossain,and A. Ghoneim, Recurrent convolutional neural networkbased multimodal disease risk prediction, Future GenerationComputer Systems, 92, 2019, 76–83.
  5. [5] S. Modi, Y. Lin, L. Cheng, G. Yang, L. Liu, and W.J.Zhang, A socially inspired framework for human state inferenceusing expert opinion integration, IEEE/ASME Transactionson Mechatronics, 16(5), 2011, 874–878.
  6. [6] J.A. Ramirez-Bautista, A. Hern´andez-Zavala, S.L. ChaparroC´ardenas, and J.A. Huerta-Ruelas, Review on plantar dataanalysis for disease diagnosis, Biocybernetics and BiomedicalEngineering 38(2), 2018, 342–361.
  7. [7] A. Saboor, M. Usman, S. Ali, A. Samad, M. Faisal Abrar, andN. Ullah, A method for improving prediction of human heartdisease using machine learning algorithms, Mobile InformationSystems, 2022, 2022.
  8. [8] I.D. Mienye, Y. Sun, and Z. Wang, An improved ensemblelearning approach for the prediction of heart disease risk,Informatics in Medicine Unlocked, 20, 2020, 100402.
  9. [9] M.Awais, M. Iqbal, Z. Mehmood, A. Irtaza, Marriam Nawaz,Tahira Nazir, and Momina Masood, Prediction of heart diseaseusing deep convolutional neural networks, Arabian Journal forScience and Engineering, 46(4), 2021, 3409–3422.
  10. [10] X. Hui, S. Ali, Z. Zhang, M.S Sarfraz, F. Zhang, and M. Faisal,Big data, extracting insights, comprehension, and analytics incardiology: an overview, Journal of Healthcare Engineering,2021, 2021, 6635463.
  11. [11] P. Shetgaonkar and S. Aswale, Heart disease prediction usingdata mining techniques, International Journal of EngineeringResearch and Technology (IJERT), 10(02), 2021.
  12. [12] X. Wu, R. Yang, and R. Lv, Research progress on learningneeds of heart failure patients, Nursing Research of China,31(18), 2017, 2194–2196.8
  13. [13] L. Chen, H. Yu, Y. Huang, and H. Jin, ECG signal-enabledautomatic diagnosis technology of heart failure, Journal ofHealthcare Engineering, 2021, 2021.
  14. [14] C. Yiu, L. Yiming, Z. Chao, Z. Jingkun, J. Huiling, T.H.Wong, H. Xingcan, J. Li, K. Yao, M.K. Yau, L. Zhao, H. Li,B. Zhang, W. Park, Y. Zhang, Z. Wang, and X. Yu, Soft,stretchable, wireless intelligent three-lead electrocardiographmonitors with feedback functions for warning of potential heartattack, SmartMat, 3(4), 2022, 668–684.
  15. [15] W.J. Zhang, G. Yang, Y. Lin, C. Ji, and M.M. Gupta, Ondefinition of deep learning, Proc. 2018 World AutomationCongress (WAC), Stevenson, WA, USA, 2018, 1–5. DOI:10.23919/WAC.2018.8430387.
  16. [16] S. Sahoo, G.R. Patra, M. Mohanty, and S. Samanta, Automateddetection of myocardial infarction with multi-lead ECG signalsusing mixture of features, Proc. Advances in IntelligentComputing and Communication, Springer, Singapore, 2022,329–337.
  17. [17] Q. Zhang, L. Wang, S. Wang, H. Cheng, L. Xu, G. Pei, Y. Wang,C. Fu, Y. Jiang, C. He, and Q. Wei, Signaling pathways andtargeted therapy for myocardial infarction, Signal Transductionand Targeted Therapy, 7(1), 2022, 1–38.
  18. [18] M.E.H. Chowdhury, K. Alzoubi, A. Khandakar, R. Khallifa, R.Abouhasera, S. Koubaa, R. Ahmed, and A. Hasan, Wearablereal-time heart attack detection and warning system to reduceroad accidents, Sensors, 19(12), 2019, 2780.
  19. [19] M. Wasimuddin, K. Elleithy, A. Abuzneid, M. Faezipour, andO. Abuzaghleh, Multiclass ECG signal analysis using globalaverage-based 2-D convolutional neural network modeling,Electronics, 10(2), 2021, 170.
  20. [20] J.R. Rajput, M. Sharma, and U. Rajendra Acharya,Hypertension diagnosis index for discrimination of high-riskhypertension ECG signals using optimal orthogonal waveletfilter bank, International Journal of Environmental Researchand Public Health, 16(21), 2019, 4068.
  21. [21] G. Zhang, Y. Si, D. Wang, W. Yang, and Y. Sun, Automateddetection of myocardial infarction using a gramian angularfield and principal component analysis network, IEEE Access,7, 2019, 171570–171583.
  22. [22] S. Jamil and M. Rahman, A novel deep-learning-basedframework for the classification of cardiac arrhythmia, Journalof Imaging, 8(3), 2022, 70.
  23. [23] X. Wu, M. Cui, M. Liu, P. Wang, and B. Qiang, Deephashing multi-label image retrieval with attention mechanism,International Journal of Robotics and Automation, 37, 2022,372–381.
  24. [24] Z. Yunfei, Y. Zhu, H. Hu, and H. Wang, Automatichyperspectral image classification based on deep feature fusionnetwork, International Journal of Robotics and Automation,36, 2021, 363–373.
  25. [25] Y. Cui, S. Li, D. Qu, X. Fan, and H. Lu, A new denoisingpreprocessing approach for image recognition by improvedHopfield neural network, International Journal of Robotics andAutomation, 36, 2021, 383–391.
  26. [26] M. Hussein and F. ¨Ozyurt, A new technique for sentimentanalysis system based on deep learning using Chi-Square featureselection methods, Balkan Journal of Electrical and ComputerEngineering, 9(4), 2021, 320–326.
  27. [27] A. C¸ınar and S.A. Tuncer, Classification of normal sinusrhythm, abnormal arrhythmia and congestive heart failureECG signals using LSTM and hybrid CNN-SVM deep neuralnetworks, Computer Methods in Biomechanics and BiomedicalEngineering, 24(2), 2021, 203–214.
  28. [28] X. Liu, P. Zhou, T. Qiu, and D.O. Wu, Blockchain-enabledcontextual online learning under local differential privacy forcoronary heart disease diagnosis in mobile edge computing,IEEE Journal of Biomedical and Health Informatics, 24(8),2020, 2177–2188.
  29. [29] A. Kumar, S. Kumar, V. Dutt, A.K. Dubey, and V. Garc´ıa-D´ıaz, IoT-based ECG monitoring for arrhythmia classificationusing Coyote Grey Wolf optimization-based deep learning CNNclassifier, Biomedical Signal Processing and Control, 76, 2022,103638.

Important Links:

Go Back