FUZZY CONTROL ROBOT ENERGY SAVING METHOD BASED ON PARTICLE SWARM OPTIMISATION ALGORITHM

Zuqiang Long, Yunmeng Wang, and Zelong Luo

References

  1. [1] Y. Chen, J. Liang, Y. Wang, Q. Pan, J. Tan, and J. Mao,Autonomous mobile robot path planning in unknown dynamicenvironments using neural dynamics, Soft Computing, 24(18),2020, 13979–13995.
  2. [2] A. Pandey and D.R. Parhi, Optimum path planning of mobilerobot in unknown static and dynamic environments usingfuzzy-wind driven optimization algorithm, Defence Technology,13(1), 2017, 47–58.
  3. [3] P. Li, X. Huang, and M. Wang, A novel hybrid method formobile robot path planning in unknown dynamic environmentbased on hybrid DSm model grid map, Journal of Experimentaland Theoretical Artificial Intelligence, 23(1), 2011, 5–22.
  4. [4] L.A. Nguyen, T.D. Ngo, T.D. Pham, and X.T. Truong, Anefficient navigation system for autonomous mobile robots indynamic social environments, International Journal of Roboticsand Automation, 37(1), 2022, 97–106.
  5. [5] J. Zhu and L. Xu, Design and implementation of ROS-basedautonomous mobile robot positioning and navigation system,Proc. 2019 18th International Symposium on DistributedComputing and Applications for Business Engineering andScience (DCABES), Wuhan, 2019, 214–217.
  6. [6] A.V. Usov, S.S. Rzaev, and N. Markovkina, Technical visionbased autonomous navigation intelligent system of a mobilerobot, Proc. 2021 IEEE Conf. of Russian Young Researchersin Electrical and Electronic Engineering (ElConRus), St.Petersburg, Moscow, 2021, 724–727.
  7. [7] T. Wang and X. Guan, Research on obstacle avoidance of mobilerobot based on multi-sensor fusion, Proc. The InternationalConf. on Cyber Security Intelligence and Analytics, Cham,2019, 760–770.
  8. [8] L. Huang, H. Qu, M. Fu, and W. Deng, Reinforcementlearning for mobile robot obstacle avoidance under dynamicenvironments, Proc. Pacific Rim International Conf. onArtificial Intelligence, Cham, 2018, 441–453.
  9. [9] N. Hassan and A. Saleem, Neural network-based TID controllerfor wheeled mobile robot trajectory tracking, Proc. of SixthInternational Congress on Information and CommunicationTechnology, Singapore, 2022, 207–215.
  10. [10] C. De, Y. Qingdong, Z. Junxiong, and D. Yixian, An adaptivelocalisation method based on DBSCAN algorithm in mobilerobot, International Journal of Robotics and Automation,38(4), 2023, 323–333.
  11. [11] Y. He, L. Cheng, K. Wang, and A. Ding, A novel mobilerobot localization method based on global vision system, Proc.Chinese Intelligent Systems Conf., Singapore, 2022, 462–474.
  12. [12] A. Ghorbel, N. Ben Amor, and M. Jallouli, Design of a flexiblereconfigurable mobile robot localization system using FPGAtechnology, SN Applied Sciences, 2(7), 2020, 1–14.
  13. [13] X. Wang, X. Wang, and D.M. Wilkes, Machine learning-basednatural scene recognition for mobile robot localization in anunknown environment (Singapore: Springer, 2019).
  14. [14] P. Zacharia, N. Aspragathos, I. Mariolis, and E. Dermatas,A robotic system based on fuzzy visual servoing for handlingflexible sheets lying on a table, Industrial Robot: AnInternational Journal, 36(5), 2009, 489–496.
  15. [15] A. Bakdi, A. Hentout, H. Boutami, A. Maoudj, O. Hachour,and B. Bouzouia, Optimal path planning and execution formobile robots using genetic algorithm and adaptive fuzzy-logic control, Robotics and Autonomous Systems, 89, 2017,95–109.7
  16. [16] C. Huang, U. Farooq, H. Liu, J. Gu, and J. Luo, A PSO-tuned fuzzy logic system for position tracking of mobile robot,International Journal of Robotics and Automation, 34(1), 2019,84–94.
  17. [17] P. Ochoa, O. Castillo, and J. Soria, Optimization of fuzzycontroller design using a differential evolution algorithmwith dynamic parameter adaptation based on type-1 andinterval type-2 fuzzy systems, Soft Computing, 24, 2020,193–214.
  18. [18] E. Bernal, O. Castillo, J. Soria, and F. Valdez, Optimization offuzzy controller using galactic swarm optimization with type-2fuzzy dynamic parameter adjustment, Axioms, 8(1), 2019, 26.
  19. [19] S. Liu and D. Sun, Minimizing energy consumption of wheeledmobile robots via optimal motion planning, IEEE/ASMETransactions on Mechatronics, 19(2), 2013, 401–411.
  20. [20] S. Angelina, S. Afifah, P. Susamti, R. Ardianto Priramadhi, andD. Darlis, Efficient energy consumption for indoor mobile robotprototype under illumination, MATEC Web of Conferences,EDP Sciences, 197, 2018, 11016.
  21. [21] M.F. Jaramillo-Morales, S. Dogru, and L. Marques, Generationof energy optimal speed profiles for a differential drive mobilerobot with payload on straight trajectories, Proc. 2020 IEEEInternational Symposium on Safety, Security, and RescueRobotics (SSRR), Abu Dhabi, 2020, 136–141.
  22. [22] M. Wei and V. Isler, Coverage path planning under the energyconstraint, Proc. 2018 IEEE International Conf. on Roboticsand Automation (ICRA), Brisbane, QLD, 2018, 368–373.
  23. [23] A. Stefek, T. Van Pham, V. Krivanek, and K.L. Pham, Energycomparison of controllers used for a differential drive wheeledmobile robot, IEEE Access, 8, 2020, 170915–170927.
  24. [24] M. Wahab, F. Rios-Gutierrez, and A. El Shahat, Energymodeling of differential drive robots, Proc. SoutheastCon 2015,Fort Lauderdale, FL, 2015.
  25. [25] T. Mac Thi, C. Copot, R. De Keyser, and T.D. Tran, and T.Vu, MIMO fuzzy control for autonomous mobile robot, Journalof Automation and Control Engineering, 4(1), 2016, 65–70.
  26. [26] M. Zangeneh, E. Aghajari, and M. Forouzanfar, A reviewon optimization of fuzzy controller parameters in roboticapplications, IETE Journal of Research, 2020, 1–10.
  27. [27] M. Faisal, M. Algabri, B.M. Abdelkader, H. Dhahri, and M.M.Al Rahhal, Human expertise in mobile robot navigation, IEEEAccess, 6, 2017, 1694–1705.
  28. [28] A. ˇStefek, V. Kˇriv´anek, Y.T. Bergeon, and J. Motsch,Differential drive robot: Spline-based design of circular path,Proc. Dynamical Systems: Theoretical and ExperimentalAnalysis, Cham, 2016, 331–342.
  29. [29] Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, Astable tracking control method for a non-holonomic mobilerobot, Proc. IROS ’91:IEEE/RSJ International Workshop onIntelligent Robots and Systems ’91, Osaka, 1991, 1236–1241.
  30. [30] R. Mathew and S.S. Hiremath, Development of waypointtracking controller for differential drive mobile robot, Proc. 20196th International Conf. on Control, Decision and InformationTechnologies (CoDIT), Paris, 2019, 1121–1126.

Important Links:

Go Back