Modelling and Simulation of Electric Power Systems for Optimal Distributed Generation Allocation

Yannis L. Karnavas and John E. Syllignakis


Power systems, Modelling and simulation, Distributed generation, Newton Raphson, Objective function


With the ever increasing demand of electricity consumption and the increasing in open access particularly in restructured (deregulated) environment, transmission line congestion is quite frequent. For maximum mitigation and benefit of this congestion, proper sizing and allocation of distributed generators (DG) are ardently necessary. A simple method is presented in this paper for the optimal placement and sizing of this type of generators in distribution electric power networks. A conventional iterative simple search technique combined with Newton Raphson (N-R) method of load flow study is applied on a real 15-bus distribution feeder model (located in Japan) and on the standard IEEE 14-bus system. The Powerworld Simulator © v.15 commercial software have been used for the modelling, visualization, simulation and analysis of the power systems under study The objective of the formulation presented here is to lower down effectively both energy cost and power losses. The paper also employs an appropriate weighting factor in order to balance the cost and loss quantities, and at the same time to formulate the overall objectives leading to high potential benefit.

Important Links:

Go Back