Avanced Technologies for Co-Processing Fossil and Biomass Resources for Transportation Fuels and Power Generation

M. Steinberg and Y. Dong


Hydrocarb process, hynol process, carnol process, transportation fuels, power generation, carbon dioxide reduction


Over the past several decades a number of proposed innovative process systems have been in various stages of development, utilizing biomass in conjunction with fossil fuels for production of transportation fuels and for electrical power generation. This article reviews the author’s involvement in these processes. The hydrocarb process converts a combination of carbonaceous fossil feedstocks, including natural gas, coal, and biomass, to produce elemental carbon, hydrogen, methane, or methanol fuel. Three basic steps are involved. A hydropyrolysis (HPR) step produces a methane-rich gas and is followed by a methane pyrolysis step (MPR) and concluded with a methanol synthesis step (MSR). The excess hydrogen is recycled. The methanol synthesis step can be converted to a water gas shift reactor (WSR) for converting carbon monoxide to hydrogen production. The hynol process also follows three steps; however, instead of a methane pyrolysis reactor (MPR), a methane steam reformer (SPR) is used to convert the methane-rich gas to CO and H2. The products of hynol can be hydrogen and methanol. The canol process reacts CO2 from coal- and biomass-fired power plants with hydrogen from the thermal decomposition of natural gas in a catalytic convert (MCR) to produce methanol for use in direct methanol fuel cells for automotive transportation. The carbon from decomposition of natural gas in these processes can be sequestered or can be used in highly efficient direct carbon fuel cell for power generation and sequestering the resulting concentrated CO2 for additional emission reduction. A continuous plasma methane decomposition reactor (PDR), as an alternative to the thermal decomposition process for carbon and hydrogen production, will also be described. The combination of using indigenous biomass and conventional fossil fuel resources in efficient innovative technologies, including hydrogen fuel cells, direct carbon fuel cells, and plasma decomposition reactors, fits in well with the U.S. administration policy of promoting the hydrogen economy, improving efficiency, and reducing CO2 emissions.

Important Links:

Go Back