Decentralized H Controller Design for Descriptor Systems

G. Zhai, N. Koyama, M. Yoshida, and S. Murao


  1. [1] R.A. Date & J.H. Chow, A parametrization approach to optimalH2 and H decentralized control problems, Automatica, 29, 1993, 457–463. doi:10.1016/0005-1098(93)90138-J
  2. [2] R.A. Paz, Decentralized H control, Proc. American Control Conf., San Francisco, CA, 1993, 2381–2384.
  3. [3] J.C. Doyle, K. Glover, P.P. Khargonekar, & B.A. Francis,State-space solutions to standard H2 and H control problems, IEEE Trans. on Automatic Control, AC-34 (8), 1989, 831–847. doi:10.1109/9.29425
  4. [4] G. Zhai, M. Ikeda, & Y. Fujisaki, Decentralized H controller design: A matrix inequality approach using a homotopymethod, Automatica, 37(4), 2001, 565–572. doi:10.1016/S0005-1098(00)00190-4
  5. [5] S. Boyd, L. El Ghaoui, E. Feron, & V. Balakrishnan, Linearmatrix inequalities in system and control theory (Philadelphia:SIAM, 1994).
  6. [6] M. Ikeda, G. Zhai, & E. Uezato, Centralized design of decen-tralized stabilizing controllers for largescale descriptor systems,Proc. 9th IFAC Symp. on Large Scale Systems: Theory andApplications, Bucharest, Romania, 2001, 409–414.
  7. [7] I. Masubuchi, Y. Kamitane, A. Ohara, & N. Suda, H control for descriptor systems: A matrix inequalities approach,Automatica, 33(4), 1997, 669–673. doi:10.1016/S0005-1098(96)00193-8
  8. [8] E. Uezato & M. Ikeda, Strict LMI conditions for stability,robust stabilization, and H∞ control of descriptor systems,Proc. 38th IEEE Conf. on Decision and Control, Phoenix, AZ,1999, 4092–4097. doi:10.1109/CDC.1999.828001
  9. [9] M. Fu & Z.Q. Luo, Computational complexity of a problemarising in fixed order output feedback design, Systems &Control Letters, 30, 1997, 209–215. doi:10.1016/S0167-6911(97)00014-5
  10. [10] K.M. Grigoriadis & R.E. Skelton, Low-order control designfor LMI problems using alternating projection methods, Au-tomatica, 32, 1996, 1117–1125. doi:10.1016/0005-1098(96)00057-X
  11. [11] K.C. Goh, M.G. Safonov, & G.P. Papavassilopoulos, A globaloptimization approach for the BMI problem, Proc. 33rd IEEEConf. on Decision and Control, Orlando, FL, 1994, 2009–2014. doi:10.1109/CDC.1994.411445
  12. [12] S.M. Liu & G.P. Papavassilopoulos, Numerical experience withparallel algorithms for solving the BMI problem, Preprintsof the 13th IFAC World Congress, San Francisco, CA, 1996,387–392.
  13. [13] M. Mattei, Sufficient condition for the synthesis of H fixed-order controllers, International Journal of Robust and Nonlinear Control, 10, 2000, 1237–1248. doi:10.1002/1099-1239(20001230)10:15<1237::AID-RNC512>3.0.CO;2-K
  14. [14] G. Zhai, K. Tamaoki, & S. Murao, Low-order H controller design for discrete-time linear systems, Proc. American Control Conf., Anchorage, AL, 2002, 2202–2203.
  15. [15] S. Murao, G. Zhai, M. Ikeda, & K. Tamaoki, DecentralizedH∞ controller design: An LMI approach, Proc. 41st SICEAnnual Conf., Osaka, Japan, 2002, 2734–2739.
  16. [16] P. Gahinet, A. Nemirovskii, A. Laub, & M. Chilali, TheLMI control toolbox, Proc. 33rd IEEE Conf. on Decision andControl, Orlando, FL, 1994, 2038–2041. doi:10.1109/CDC.1994.411440

Important Links:

Go Back