F. Cheriet, D. Jiang, and N.F. Stewart


  1. [1] I. Schoenberg, Contributions to the problem of approximation of equidistant data by analytic functions, Quarterly of Applied Mathematics, 4, 1946, 45–99.
  2. [2] G. Wahba, Spline models for observational data, CBMS-NFS Regional Conference Series, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1990.
  3. [3] G. Farin, Curves and surfaces, 3rd edn (San Diego, CA:Academic Press, 1993).
  4. [4] A.R. Levy, M.S. Goldberg, N.E. Mayo, J.A. Hanley et al., Reducing the lifetime risk of cancer from spinal radiographs among people with adolescent idiopathic scoliosis, Spine, 21(13), 1996, 1540–1548. doi:10.1097/00007632-199607010-00011
  5. [5] Y. Wang, G. Wehsheng, & M.B. Brown, Spline smoothingfor bivariate data with applications to association between hormones, Statistica Sinica, 10, 2000, 377–397.
  6. [6] C.-E. Aubin, Y. Petit, I.A. Stokes, F. Poulin et al., Biomechanical modeling of posterior instrumentation of the scoliotic spine, Computer Methods in Biomechanics and Biomedical Engineering, 1(6), 2003, 27–32.
  7. [7] D. Perie, C.-E. Aubin, Y. Petit, M. Beauséjour et al., Boston brace correction in idiopathic scoliosis: A biomechanical study, Spine, 28(15), 2003, 1672–1677. doi:10.1097/00007632-200308010-00008
  8. [8] D. Jiang, Visualization and prediction of spatial deformation using thin-plate splines in the context of scoliosis, Mémoire M.Sc., Département IRO, Université de Montréal, Montréal, 2003.
  9. [9] k. Rohr et al., Landmark-based elastic registration using approximating thin-plate splines, IEEE Trans. on Medical Imaging, 20(6), 2001, 526–534. doi:10.1109/42.929618
  10. [10] I.A. Stokes, Three-dimensional terminology of spinal deformity: A report presented to the Scoliosis Research Society by the Scoliosis Research Society Working Group on 3-D Terminology of Spinal Deformity, Spine, 19(2), 1994, 236–248.
  11. [11] M.H. Pope, A.F. Stokes, & M. Moreland, The biomechanics of scoliosis, CRC Critical Reviews in Biomedical Engineering, 11(3), 1984, 157–188.
  12. [12] Statistics-Canada, Canadian Census Data, CANSIM II, Table 051-0001,, 2002.
  13. [13] D.J. Wever, K.A. Tonseth, A.G. Veldhuizen, J.C. Cool et al., Curve progression and spinal growth in brace treated idiopathic scoliosis, Clinical Orthopaedics and Related Research Journal, 377, 2000, 169–179. doi:10.1097/00003086-200008000-00023
  14. [14] L.E. Peterson & A.L. Nachemson, Prediction of progression of the curve in girls who have adolescent idiopathic scoliosis of moderate severity: Logistic regression analysis based on data from The Brace Study of the Scoliosis Research Society. Journal of Bone and Joint Surgery (America), 77(6), 1995, 823–827.
  15. [15] T. Karachalios, J. Sofianos, N. Roidas, G. Sapkas et al., Ten-year follow-up evaluation of a school screening program for scoliosis. Is the forward-bending test an accurate diagnostic criterion for the screening of scoliosis? Spine, 24 (22), 1999, 2318–2324.
  16. [16] D.G. Little, K.M. Song, D. Katz, & J.A. Herring, Relationship of peak height velocity to other maturity indicators in idiopathic scoliosis in girls, Journal of Bone and Joint Surgery (America), 82(5), 2000, 685–693.
  17. [17] K.M. Song & D.G. Little, Peak height velocity as a maturity indicator for males with idiopathic scoliosis, Journal of Pediatric Orthopaedics, 20 (3), 2000, 286–288. doi:10.1097/00004694-200005000-00003
  18. [18] E. Ascani, P. Bartolozzi, C.A. Logroscino, P.G. Marchetti et al., Natural history of untreated idiopathic scoliosis after skeletal maturity, Spine, 11(8), 1986, 784–789. doi:10.1097/00007632-198610000-00007
  19. [19] S.L. Weinstein & I.V. Ponseti, Curve progression in idiopathic scoliosis, Journal of Bone and Joint Surgery (America), 65 (4), 1983, 447–455.
  20. [20] S.L. Weinstein & I.V. Ponseti, Idiopathic scoliosis: long-term follow-up and prognosis in untreated patients, Journal of Bone and Joint Surgery (America), 63(5), 1981, 702–712.
  21. [21] L. Song, G. Lemelin, D. Beauchamp, S. Delisle et al., 3D measuring and modeling using digitized data acquired with color optical 3D digitizers and related applications, Proc. 12th Symp. on 3D Technology, Yokohama, Japan, 2001, 56–71.
  22. [22] V. Pazos, F. Cheriet, L. Song, H. Labelle et al., Accuracy assessment of human trunk surface 3D reconstructions from an optical digitizing system, Medical and Biological Engineering and Computing, 43(1), 2005, 11–15. doi:10.1007/BF02345117
  23. [23] E. Truco & A. Verri Introductory techniques for 3D computer vision, Chapter 7 (Prentice-Hall, 1998), 150–157.
  24. [24] C.-E. Aubin, J. Dansereau, F. Parent, H. Labelle et al., Morphometric validations of personalized 3-D reconstructions and geometric models of the human spine, Medical and Biological Engineering and Computing, 35, 1997, 611–618. doi:10.1007/BF02510968
  25. [25] P. Poncet, S. Delorme, J.L. Ronsky, J. Dansereau et al., Reconstruction of laser-scanned 3D torso topography and sterioradiographical spine and rib-cage geometry in scoliosis, Computer Methods in Biomechanics and Biomedical Engineering, 4(1), 2000, 59–75. doi:10.1080/10255840008907998
  26. [26] C. Bergeron, F. Cheriet, J. Ronsky, R.F. Zernicke et al., Prediction of anterior scoliotic spinal curve from trunk surface using support vector regression, Engineering Applications of Artificial Intelligence, 18(8), 2005, 973–983. doi:10.1016/j.engappai.2005.03.006
  27. [27] V. Pazos, F. Cheriet, H. Labelle, & J. Dansereau, Reliability study of the 3D external trunk asymmetry assessment, International Research Society of Spinal Deformities, Symp. 2004, Vancouver, Canada, June 9–12, 2004, 27–30.

Important Links:

Go Back