A. Merabet, M. Ouhrouche, and R.T. Bui


  1. [1] J. Chiasson, Dynamic feedback linearization of the inductionmotor, IEEE Trans. on Automatic Control, 38 (10), 1993,1588–1594. doi:10.1109/9.241583
  2. [2] T.K. Boukas & T.G. Habetler, High-performance inductionmotor speed control using exact feedback linearization withstate und state derivative feedback, IEEE Trans. on PowerElectronics, 19 (4), 2004, 1022–1028. doi:10.1109/TPEL.2004.830042
  3. [3] M.K. Maaziz, P. Mendes, & P. Boucher, A new multivariablecontrol strategy of induction motors, Control EngineeringPractice, 10, 2002, 605–613. doi:10.1016/S0967-0661(02)00012-6
  4. [4] F. Chen & M.W. Dunnigan, A new non-linear siding-modetorque and flux control method for an induction machine incor-porating a sliding-mode flux observer, International Journalof Robust and Nonlinear Control, 14, 2004, 463–486. doi:10.1002/rnc.881
  5. [5] C.E. Garcia, D.M. Prett, & M. Morari, Model predictivecontrol: Theory and practice: A survey, Automatica, 3, 1989,335–348. doi:10.1016/0005-1098(89)90002-2
  6. [6] D.W. Clarke, C. Mohtadi, & P.C. Tuffs, Generalized predictivecontrol, Part 1: The basic algorithm, Automatica, 23, 1987,137–148.
  7. [7] D.W. Clarke, C. Mohtadi, & P.C. Tuffs, Generalized predictivecontrol, Part 2: The basic algorithm, Automatica, 23, 1987,149–163.
  8. [8] D. Soloway & P.J. Haley, Neural generalized predictive control:A Newton-Raphson implementation, Proc. 11th IEEE Int.Symp. on Intelligent Control, Dearborn, MI, 1996, 277–282.150
  9. [9] R. Kennel, A. Linder, & M. Linke, Generalized predictivecontrol (GPC) ready for use in drive applications?, 32nd IEEEPower Electronics Specialists Conf. (PESC), Vancouver, 2001,17–22.
  10. [10] M.K. Maaziz, P. Boucher, & D. Dumer, A new control strategyfor induction motor based on non-linear predictive controland feedback linearization, International Journal of AdaptiveControl and Signal Processing, 14, 2000, 313–329. doi:10.1002/(SICI)1099-1115(200003/05)14:2/3<313::AID-ACS589>3.0.CO;2-D
  11. [11] R. Hedjar, R. Toumi, P. Boucher, & D. Dumer, Two cascadednonlinear predictive controls of induction motor, IEEE Conf.on Control Application, 1, Istanbul, 2003, 458–463.
  12. [12] M. Fliess, J. L´evine, J. Martin, & P. Rouchon, Flatnessand defect of non-linear systems: Introductory theory andexamples, International Journal of Control, 61, 1995, 1327–1361. doi:10.1080/00207179508921959
  13. [13] P. Martin & P. Rouchon, Two remarks on induction motors,Proc. CESA, Lille, France, 1996, 76–79.
  14. [14] E. Delaleau, J.P. Louis, & R. Ortega, Modeling and controlof induction motors, International Journal of Applied Mathe-matics and Computer Science, 11 (1), 2001, 105–129.
  15. [15] P. Vas, Artificial-intelligence-based electrical machines anddrives: Application of fuzzy, neural, fuzzy neural and geneticalgorithm-based techniques (New York: Oxford UniversityPress, 1999).
  16. [16] D. Neumerkel, J. Franz, L. Kr¨uger, & A. Hidiroglu, Real timeapplication of neural model predictive control for an inductionservo drive, Proc. 3rd IEEE Conf. on Control Applications,Glasgow, 1994, 433–438.
  17. [17] M. Cirrincione & M. Pucci, An MRAS-based sensorless highperformance induction motor drive with a predictive adaptivemodel, IEEE Trans. on Industrial Electronics, 52 (2), 2005,532–551. doi:10.1109/TIE.2005.844247
  18. [18] M.M. Negm, A.H. Mantawy, & M.H. Shwehdi, A globalANN algorithm for induction motor based on optimal previewcontrol theory, Iranian Journal of Electrical and ComputerEngineering, 2 (1), 2003, 23–29.
  19. [19] L. Kr¨uger, D. Naunin, & C. Garbrecht, Stochastic and neuralmodels of an induction motor, Mathematics and Computers inSimulation, 46, 1998, 313–324. doi:10.1016/S0378-4754(97)00144-4
  20. [20] L. Constant, P. Lagarrigues, B. Dagues, I. Rivals, & L.Personnaz, Modeling of electromechanical systems using neuralnetworks, in P.S. Szczepaniak (ed.), Computational intelligenceand applications (Physica-Verlag, 1999).
  21. [21] J.F. Martins, A.J. Pires, & J.A. Dente, Automatic input/outputmodeling of a squirrel-cage induction motor drive system usingneural network, EPE’97, 4, Trondheim, Norway, 1997, 632–637.
  22. [22] I.H. Kim, S. Fok, K. Fregene, D.H. Lee, T.S. Oh, & W.I. Wang,Neural network-based system identification and controller syn-thesis for an industrial sewing machine, International Journalof Control, Automation, and Systems, 2 (1), 2004, 83–91.
  23. [23] L. Boullart, A. Krijgsman, & R.A. Vingerhoeds, Application ofartificial intelligence in process control (Oxford, UK: PergamonPress, 1992).
  24. [24] M.H. Hassoun, Fundamentals of artificial neural networks(Cambridge, MA: MIT Press, 1995).
  25. [25] P.H. Sørensen, M. Nørgaard, O. Ravn, & N.K. Poulsen,Implementation of neural network based non-linear predictivecontrol, Neurocomputing, 28, 1999, 37–51. doi:10.1016/S0925-2312(98)00114-3
  26. [26] M. Lazar & O. Pastravanu, A neural predictive controller fornon-linear systems, Mathematics and Computers in Simulation,60, 2002, 315–324. doi:10.1016/S0378-4754(02)00023-X
  27. [27] M. Ouhrouche, Estimation of speed, rotor flux and rotorresistance in cage induction motor sensorless drive using theEKF algorithm, International Journal of Power and EnergySystems, 22 (2), 2002, 103–109.Appendix A: List of Symbolsω Rotor speedφrα, φrβ(α, β) components of the rotor fluxspace vectorisα, isβ (α, β) components of the statorcurrent space vectorusα, usβ (α, β) components of the statorvoltage space vectorp Number of pole pairsRs, Rr Stator and rotor resistancesLs, Lr, Lm Stator, rotor, and magnetizinginductancesτr = Lr/Rr Rotor electrical time constantσ = (1 − L2m/LsLr) Leakage factorJ Rotor moment of inertia (kg·m2)B Damping coefficient (N·m·s)Tl Load torque (N·m)Appendix B: Induction Machine ParametersRated speed ωnom 150 rad/sRated torque Tlnom 0.38 N·mNumber of pole pairs p 2Stator resistance Rs 4.287 ΩRotor resistance Rr 2.610 ΩStator inductance Ls 0.404 HRotor inductance Lr 0.398 HMagnetizing inductance Lm 0.368 HRotor moment of inertia J 0.025 Kg·m2151

Important Links:

Go Back