Maria Nadia Postorino and Mario Versaci


  1. [1] D. Ort´uzar and L.G. Willumsen, Modelling transport, 2nded. (New York, NY: John Wiley, 1999).
  2. [2] M.S. Ben-Akiva and S. Lerman, Discrete choice analysis (Cam-bridge, MA: MIT Press, 1985).
  3. [3] C. Manski, The analysis of quantitative choice, Doctoral Dis-sertation, MIT, MA, 1973.
  4. [4] K. Ashok, W.R. Dillon, and S. Yuan, Extending discrete choicemodels to incorporate attitudinal and other latent variables,Journal of Marketing Research, XXXIX, 1970, 31–46.
  5. [5] S. Choo and P.L. Mokhtarian, What type of vehicle do peopledrive. The role of attitude and lifestyle in influencing vehicletype choice, Transportation Research Part A, 38, 2004, 201–222.
  6. [6] T.F. Golob, Joint models of attitudes and behaviour inevaluation of the San Diego I-15 congestion pricing project,Transportation Research Part A, 35, 2001, 495–514.
  7. [7] M.V. Johansson, T. Heldt, and P. Johansson, The effects of at-titudes and personality traits on mode choice, TransportationResearch Part A, 40, 2006, 507–525.
  8. [8] T. Morikawa, M. Ben-Akiva, and D. McFadden, Discretechoice models incorporating revealed preferences and psycho-metric data, in Econometric models in marketing advances ineconometrics: A research annual (UK: Elsevier Science Ltd,2002), Vol. 16.
  9. [9] L.H. Pendleton and J.S. Shonkwiler, Valuing bundled at-tributes: A latent characteristics approach, Land Economics,77(1), 2001, 118–129.
  10. [10] A. Eberhard, S. Schreider, and L. Stojkov, Construction ofthe utility function using a non-linear best fit optimisationapproach, Proc. Int. Congress on Modelling and SimulationMODSIM07, Christchurch, 10–14, December, 2007.
  11. [11] J.R. Figueira, S. Greco, and R. Słowinski, Building a set ofadditive value functions representing a reference pre-order andintensities of preference: GRIP method, European Journal ofOperational Research, 195, 2009, 460–486.
  12. [12] E. Jacquet-Lagr`eze and Y. Siskos, Assessing a set of additiveutility functions for multicriteria decision making: The UTAmethod, European Journal of Operational Research, 10(2),1982, 151–164.
  13. [13] T. Sayed and A. Razavi, Comparison of neural and con-ventional approaches to mode choice analysis, Journal ofComputing in Civil Engineering, 14(1), 2000, 23–30.
  14. [14] L.A. Zadeh, Fuzzy sets, Information and Control, 8(3), 1965,338–353.
  15. [15] A. Kaur and A. Kuma, A new method for solving fuzzytransportation problems using ranking function, AppliedMathematical Modelling, 35, 2011, 5652–5661.
  16. [16] S.T. Liu and C. Kao, Solving fuzzy transportation problemsbased on extension principle, European Journal of OperationalResearch, 153, 2004, 661–674.
  17. [17] M. Oheigeartaigh, A fuzzy transportation algorithm, FuzzySets System, 8, 1982, 235–243.
  18. [18] O.M. Saad and S.A. Abbas, A parametric study on trans-portation problem under fuzzy environment, Journal of FuzzyMathematics, 11, 2003, 115–124.
  19. [19] I. Patiniotakis, D. Apostolou, and G. Mentzas, Fuzzy UTAS-TAR: A method for discovering utility functions from fuzzydata, Expert Systems with Applications, 3, 2011, 15463–15474.
  20. [20] M.N. Postorino and M. Versaci, A neuro-fuzzy approach tosimulate the user mode choice behaviour in a travel decisionframework, International Journal of Modelling and Simulation,28(1), 2008, 64–71.
  21. [21] A. Tortum, N. Yayla, and M. G¨okdag, The modelling of modechoices of intercity freight transportation with the artificialneural networks and adaptive neuro-fuzzy inference system,Expert Systems with Applications, 36, 2009, 6199–6217.
  22. [22] P.C. Vythoulkas and H.N. Koutsopoulos, Modelling discretechoice behaviour using concepts from fuzzy set theory, approx-imate reasoning and neural networks. Transportation ResearchPart C, 11, 2003, 51–73.
  23. [23] M. Dell’Orco and M. Ottomanelli, Simulation of users decisionin transport mode choice using neuro-fuzzy approach, LectureNotes in Computer Science, 7334, 2012, 44–53.
  24. [24] K. Andrade, K. Uchida, and S. Kagaya, Development ofTransport mode choice model by using adaptive neuro-fuzzyinference system, Transportation Research Record: Journal ofthe Transportation Research Board, 1977, 2006, 8–16.
  25. [25] T. Takagi and M. Sugeno, Fuzzy identification of systems andits application to modeling and control, IEEE Transactionson Systems, Man and Cybernetics, 15, 1985, 116–132.
  26. [26] Y. Lin, G.A. Cunningham, S.V. Coggenshall, and R.D. Jones,Non linear system input structure identification: Two stagefuzzy curves and surface. IEEE Transaction on Systems, Man,and Cybernetics, 28(5), 1998, 678–684.
  27. [27] J.S.R. Jang, ANFIS: Adaptive-network-based fuzzy infer-ence systems, IEEE Transactions on Systems, Man, andCybernetics, 23, 1993, 665–685.
  28. [28] C. Bezdek, Pattern recognition with fuzzy objective functionalgorithms (New York, NY: Plenum Press, 1981).
  29. [29] J.A. Dickerson and B. Kosko, Fuzzy function approximationwith ellipsoidal rules, IEEE Transaction on Systems, Man,and Cybernetics – Part B: Cybernetics, 26(4), 1996, 542–560.
  30. [30] M.N. Postorino, A comparative analysis of different specifi-cations of modal choice models in an urban areas, EuropeanJournal of Operational Research, 7, 1993, 288–302.

Important Links:

Go Back