Barbara M. Johnston and Peter R. Johnston


  1. [1] L. Clerc, Directional differences of impulse spread intrabecular muscle from mammalian heart, Journal ofPhysiology, 255, 1976, 335–346.
  2. [2] K. R. Foster and H. P. Schwan, Dielectic propertiesof tissue and biological materials: A critical review,Critical Reviews in Biomedical Engineering, 17(1),1989, 25–104.
  3. [3] R. M. Gulrajani, Bioelectricity and Biomagnetism(New York: John Wiley and Sons, 1998).
  4. [4] Darren Hooks, Myocardial segment-specific modelgeneration for simulating the electrical action of theheart, BioMedical Engineering OnLine, 6(1), 2007,21–21.
  5. [5] Darren A. Hooks, Karl A. Tomlinson, Scott G. Mars-den, Ian J. LeGrice, Bruce H. Smaill, Andrew J. Pul-lan, and Peter J. Hunter, Cardiac microstructure: Im-plications for electrical propagation and defibrillationin the heart, Circulation Research, 91(4), 8 2002,331–338.
  6. [6] Darren A. Hooks, Mark L. Trew, Bryan J. Cald-well, Gregory B. Sands, Ian J. LeGrice, and Bruce H.Smaill, Laminar arrangement of ventricular myocytesinfluences electrical behavior of the heart, CirculationResearch, 101(10), 11 2007, e103–112–e103–112.
  7. [7] Bruce Hopenfeld, Jeroen G. Stinstra, and Rob S.MacLeod, The effect of conductivity on st-segmentepicardial potentials arising from subendocardial is-chemia, Annals of Biomedical Engineering, 33(6), 062005, 751–763.544
  8. [8] Peter R. Johnston, A cylindrical model for studyingsubendocardial ischaemia in the left ventricle, Math-ematical Biosciences, 186(1), 2003, 43–61.
  9. [9] Peter R. Johnston, Approximate solutions for certainbidomain problems in electrocardiography, PhysicalReview E, 78(4), 2008.
  10. [10] Peter R. Johnston, A finite volume method solu-tion for the bidomain equations and their applicationto modelling cardiac ischaemia, Computer Methodsin Biomechanics and Biomedical Engineering, 13(2),2010, 157–170.
  11. [11] Peter R. Johnston. A non-dimensional formulation ofthe passive bidomain equation, Journal of Electrocar-diology, 44(2), 2011, 184–188.
  12. [12] Peter R. Johnston, A sensitivity study of conductivityvalues in the passive bidomain equation, Mathemati-cal Biosciences, 232(2), 2011, 142–150.
  13. [13] Peter R. Johnston and David Kilpatrick, The effect ofconductivity values on ST segment shift in subendo-cardial ischaemia, IEEE Transactions on BiomedicalEngineering, 50(2), 2003, 150–158.
  14. [14] Peter R. Johnston, David Kilpatrick, and Chuan YongLi, The importance of anisotropy in modelling STsegment shift in subendocardial ischaemia, IEEETransactions on Biomedical Engineering, 48(12),2001, 1366–1376.
  15. [15] D. Kilpatrick, A. J. Bell, and S. J. Walker, Derivedepicardial potentials differentiate ischemic ST depres-sion from ST depression secondary to ST elevationin acute inferior myocardial infarction in man, Jour-nal of the American College of Cardiology, 14, 1989,695–702.
  16. [16] D. Li, C. Y. Li, A. C. Yong, and D. Kilpatrick, Sourceof electrocardiographic ST changes in subendocardialischemia, Circulation Research, 82, 1988, 957–970.
  17. [17] M. C. MacLachlan, J. Sundnes, and G. T. Lines,Simulation of st segment changes during subendo-cardial ischemia using a realistic 3-d cardiac geom-etry, IEEE Transactions on Biomedical Engineering,52(5), 2005, 799–807.
  18. [18] P. R. Johnston, Cardiac conductivity values — a chal-lenge for experimentalists?, Noninvasive FunctionalSource Imaging of the Brain and Heart & 8th Inter-national Conference on Bioelectromagnetism (NFSI& ICBEM), Banff, Canada, 2011, 39–43.
  19. [19] Salil G. Patel and Bradley J. Roth, Approximate solu-tion to the bidomain equations for electrocardiogramproblems, Physical Review E (Statistical, Nonlinear,and Soft Matter Physics), 72(5), 2005, 051931.
  20. [20] Mark Potse, Bruno Dub´e, and Alain Vinet, Cardiacanisotropy in boundary-element models for the elec-trocardiogram, Medical & Biological Engineering &Computing, 47(7), 2009, 719–729.
  21. [21] D. E. Roberts, L. T. Hersh, and A. M. Scher, Influ-ence of cardiac fiber orientation on wavefront voltage,conduction velocity and tissue resistivity in the dog,Circulation Research, 44, 1979, 701–712.
  22. [22] D. E. Roberts and A. M. Scher, Effects of tissueanisotropy on extracellular potential fields in caninemyocardium in situ, Circulation Research, 50, 1982,342–351.
  23. [23] B. J. Roth, A comparison of two boundary conditionsused with the bidomain model of cardiac tissue, An-nals of Biomedical Engineering, 19, 1991, 669–678.
  24. [24] S. Rush, J. A. Abildskov, and R. McFee, Resistivityof body tissues at low frequencies, Circulation Re-search, 12, 1963, 40–50.
  25. [25] D. D. Streeter, Gross morphology and fiber geome-try of the heart, in R. M. Berne (Ed.), Handbook ofPhysiology, Vol 1, 2 (Baltimore, MD: Williams andWilliams, 1979), 61–112.
  26. [26] L. Tung, A Bi–domain model for describing is-chaemic myocardial D-C potentials, PhD thesis, Mas-sachusetts Institute of Technology, June 1978.

Important Links:

Go Back