Haiming Aia, Shuicai Wua, Harbin Aib, Hongjian Gaoa, Chunlan Yanga, Yi Zenga


  1. [1] X. J. Zhang, G Lee, T Tajima, et al. Segmentation ofliver region with tumorous tissues, Medical Imaging 2007Conference, 6512(2007) : 51235-51235.
  2. [2] Y Liu, X Yang, Q Nan, et al. Phantom experimentalstudy on microwave ablation with a water-cooled antenna,International Journal of Hyperthermia. 4 (2007): 381-386.
  3. [3] M Laurent, C Sergio. Fully automatic liversegmentation through graph-cut technique, Proceedings ofthe 9thAnnual International Conference of the IEEEEMBS. (2007) 5243.
  4. [4] J.X. Zhang, M.M. Zhang. 3D reconstruction based onCT image and its application, Proceedings of SPIE.5444(2009) 575-578.
  5. [5] C Paola, C Elena, E Andrea. Liver segmentation fromcomputed tomography scans: a survey and a newalgorithm, Artificial Intelligence in Medicine. 45 (2009)185-96.
  6. [6] F Jun, H.S. Horace. A multi-resolution statisticaldeformable model for soft-tissue organ reconstruction,Pattern Recognition. 42 (2009) 1543-1558.
  7. [7] A Schenk, G Prause, H Peitgen. Local costcomputation for efficient segmentation of 3D object withlive wire, Proceeding of SPIE medical imaging. 4322(2001) 97808194400821357-97808194400821364.
  8. [8] T Kaneko, G.U. L, H Fujimoto. Recognition ofabdominal organs using 3D mathematical morphology,Systems and Computers in Japan. 33 (2002) 75-83.
  9. [9] C.C. Lee, P.C. Chung. Recognizing abdominal organin CT images using contextual neural network and fuzzyrules, Proceeding of the 22th annual EMBS internationalconference. 78036645 (2002) 1745-1748.
  10. [10] L Gao, D Heath, E Fistman. Abdominal imagesegmentation using three-dimensional deformable model.Investigative Radiology. 33 (1998) 348-355.
  11. [11] A Shimizu, R Ohno, T Ikegami, et al. Multi-organsegmentation in three dimensional abdominal CT images,International Journal of Computer Assisted Radiology andSurgery . 1 (2006) 76-78.
  12. [12] S.H. Luo, Q. M. Hu, X.G. He, et al. Automatic liverFig.3. (a) Original image. (b) Segmented result.(c) Binary image of tumor. (d) Tumor boundary refinement.(e) 3D tumor model based on our method. (f) 3D tumor model based on Amira.s182parenchyma segmentation from abdominal CT imageusing support vector machines, 2009 ICME InternationalConference. 9781424433162(2009)1-5.
  13. [13] M Farzinfar, Z Xue, E.K. Teoh A novel approach forcurve evolution in segmentation of medical image,Computerized Medical Imaging and Graphics. 34 (2010)354-361.
  14. [14] H Yuan, Y.P. Luo, D.C. Hu. Automatic medicalimage segmentation based on gradient vector flow,Journal of Computer Applications. 27 (2007) 149-151.
  15. [15] D.J. Withey, Z.J. Koles. Medical image segmentation:methods and software, Proceedings of NFSI & ICFBI.1424409497 (2007) 140-143.
  16. [16] F.F. Pedro, P.H. Daniel. Efficient graph-based imagesegmentation, International Journal of Computer Vision.59 (2004) 167-181.
  17. [17] Q.N. Subakan, B.C. Vemuri. A quaternionframework for color image smoothing and segmentation,Int J Comput Vis. 91 (2011) 233-250.
  18. [18] D. Krstinic, A.K. Skelin, I. Slapnicar. Fast two-stephistogram-based image segmentation, IET Image Process.1 (2011) 63-72.
  19. [19] Z M Tan. Research on graph theory based imagesegmentation and its embedded application [D]. Shanghai:Shanghai Jiao Tong University, 2007. (In Chinese)
  20. [20] L.B. Chaodrajit, J.C. Edward, N.L. Kwun. Arbitrarytopology shape reconstruction from planar cross sections,Graphical Models and Image Processing. 58 (1996) 524-543.
  21. [21] H.G. He, J Tian, M.C. Zhao, et al. A 3D medicalimaging surface reconstruction scheme based onsegmentation, Journal of Software. 13 (2002) 219-226.
  22. [22] N Gonzalo, P Rodrigo. On sorting heaps andminimum spanning trees, Algorithmica. 57 (2010) 585-620.
  23. [23] B Sahiner, N Petrick, H.P. Chan, et al. Computer-aided characterization of mammographic masses:accuracy of mass segmentation and its effects oncharacterization, IEEE Transaction on Medical Imaging.20 (2001) 175-84.

Important Links:

Go Back