Mathilde Granke, Quentin Grimal, Amena Saıed, Pascal Laugier


  1. [1] Q. Grimal, K. Raum, A. Gerisch, and P. Laugier, “Adetermination of the minimum sizes of representativevolume elements for the prediction of cortical boneelastic properties.,” Biomech Model Mechanobiol,vol. 10, pp. 925–937, Dec 2011.
  2. [2] J. Y. Rho, P. Zioupos, J. D. Currey, and G. M. Pharr,“Microstructural elasticity and regional heterogeneityin human femoral bone of various ages examined bynano-indentation,” Journal of Biomechanics, vol. 35,no. 2, pp. 189–98., 2002.
  3. [3] N. X. Dong and E. X. Guo, “The dependence of trans-versely isotropic elasticity of human femoral corticalbone on porosity,” Journal of Biomechanics, vol. 37,no. 8, pp. 1281–1287, 2004.
  4. [4] M. Granke, Q. Grimal, A. Sa¨ıed, P. Nauleau,F. Peyrin, and P. Laugier, “Change in porosity is themajor determinant of the variation of cortical boneelasticity at the millimeter scale in aged women.,”Bone, vol. 49, no. 5, pp. 1020–1026, 2011.
  5. [5] C. Hellmich and F. J. Ulm, “can the diverse elasticproperties of trabecular and cortical bone be attributedto only a few tissue-independant phase properties andtheir interactions?,” Biomechanics and Modeling inMechanobiology, vol. 2, pp. 219–238, 2004.
  6. [6] X. N. Dong and X. E. Guo, “Prediction of corti-cal bone elastic constants by a two-level microme-chanical model using a generalized self-consistentmethod,” Journal of Biomechanical Engineering-Transactions of the Asme, vol. 128, no. 3, pp. 309–316, 2006.
  7. [7] J. M. Deuerling, W. M. Yue, A. A. E. Orias, and R. K.Roeder, “Specimen-specific multi-scale model for theanisotropic elastic constants of human cortical bone,”Journal of Biomechanics, vol. 42, no. 13, pp. 2061–2067, 2009.
  8. [8] W. J. Parnell and Q. Grimal, “The influence ofmesoscale porosity on cortical bone anisotropy. inves-tigations via asymptotic homogenization,” Journal ofthe Royal Society Interface, vol. 6, no. 30, pp. 97–109,2009.
  9. [9] Q. Grimal, G. Rus, W. J. Parnell, and P. Laugier, “Atwo-parameter model of the effective elastic tensor forcortical bone.,” J Biomech, vol. 44, no. 8, pp. 1621–1625, 2011.
  10. [10] A. A. Espinoza Or´ıas, J. Deuerling, M. Landrigan,J. Renaud, and R. Roeder, “Anatomic variation in theelastic anisotropy of cortical bone tissue in the hu-man femur.,” J Mech Behav Biomed Mater, vol. 2,pp. 255–263, Jul 2009.
  11. [11] A. Sa¨ıed, K. Raum, I. Leguerney, and P. Laugier,“Spatial distribution of anisotropic acousticimpedance assessed by time-resolved 50-mhzscanning acoustic microscopy and its relation toporosity in human cortical bone.,” Bone, vol. 43,no. 1, pp. 187–194, 2008.
  12. [12] Q. Grimal and W. Parnell, “ah ho-mogenization code for download at”
  13. [13] J. Rho, M. Roy, T. Tsui, and G. Pharr, “Elastic prop-erties of microstructural components of human bonetissue as measured by nanoindentation.,” J BiomedMater Res, vol. 45, pp. 48–54, Apr 1999.
  14. [14] T. Zohdi and P. Wriggers, Introduction to computa-tional micromechanics. Lecture notes in applied com-putational mechanics, Berlin: Springer-Verlag, 2005.
  15. [15] G. Franzoso and P. Zysset, “Elastic anisotropy ofhuman cortical bone secondary osteons measuredby nanoindentation.,” J Biomech Eng, vol. 131,pp. 021001–1, Feb 2009.
  16. [16] D. M. Cooper, C. D. L. Thomas, J. G. Clement,A. L. Turinsky, C. W. Sensen, and B. Hallgrimsson,“Age-dependent change in the 3d structure of corti-cal porosity at the human femoral midshaft,” Bone,vol. 40, no. 4, pp. 957–965, 2007.

Important Links:

Go Back