Mariana S.M. Cavalca, Roberto K.H. Galvão, and Takashi Yoneyamaa


  1. [1] M. Sedraoui, Application of the multivariable predictive controlon a distillation column using the optimization methods,Control and Intelligent Systems, 36(2), 2008, 111–118.
  2. [2] H.S. Barbosa, R.K.H. Galvao, and T. Yoneyama, Model predic-tive control of linear systems subject to actuator degradation,Control and Intelligent Systems, 40(4), 2012, 212–219.
  3. [3] D.Q. Mayne, J.B. Rawlings, C.V. Rao, and P.O.M. Scokaert,Constrained model predictive control: Stability and optimality,Automatica, 36, 2000, 789–814.
  4. [4] J.M. Maciejowski, Predictive control with constraints (Harlow:Prentice Hall, 2002).
  5. [5] P.J. Campo and M. Morari, Robust model predictive cotrol,Proc. American Control Conf., Minneapolis, MN, 1987,1021–1026.
  6. [6] J.C. Allwright and G.C. Papavasiliou, On linear programmingand robust model-predictive control using impulse-responses,Systems and Control Letters, 18, 1992, 159–164.
  7. [7] Z.Q. Zheng and M. Morari, Robust stability of constrainedmodel predictive control, Proc. American Control Conf.,San Francisco, CA, 1993, 379–383.
  8. [8] M.V. Kothare, V. Balakrishnan, and M. Morari, Robust con-strained model predictive control using linear matrix inequal-ities, Automatica, 32(10), 1996, 1361–1379.
  9. [9] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linearmatrix inequalities in system and control theory (Philadelphia:SIAM, 1994).
  10. [10] F.A. Cuzzola, J.C. Geromel, and M. Morari, An improvedapproach for constrained robust model predictive control,Automatica, 38, 2002, 1183–1189.
  11. [11] W.J. Mao, Robust stabilization of uncertain time-varyingdiscrete systems and comments on “an improved approach forconstrained robust model predictive control , Automatica, 39,2003, 1109–1112.
  12. [12] N. Wada, K. Saito, and M. Saeki, Model predictive controlfor linear parameter varying systems using parameter depen-dent Lyapunov function, IEEE Transactions on Circuits andSystems II: Express Briefs, 53, 2006, 1446–1450.
  13. [13] B. Ding, Y. Xi, M.T. Cychowski, and T. O’Mahony,A synthesis approach for output feedback robust constrainedmodel predictive control, Automatica, 44, 2008, 258–264.
  14. [14] Z. Wan and M.V. Kothare, A framework for design of scheduledoutput feedback model predictive control, Journal of ProcessControl, 18(3–4), 2008, 391–398.
  15. [15] D. Li, Y. Xi, and G. Furong, Synthesis of dynamic outputfeedback RMPC with saturated inputs. Automatica, 49, 2013,949–954.
  16. [16] J. Schuurmans and J.A. Rossiter, Robust predictive controlusing tight sets of predicted states, IEE Proc.: Control Theoryand Applications, 147(1), 2000, 13–18.
  17. [17] G. Franze, D. Famularo, E. Garone, and A. Casavola, Dilatedmodel predictive control strategy for linear parameter-varyingsystems with a time-varying terminal set, IET Control Theoryand Applications, 3(1), 2009, 110–120.
  18. [18] X. Liu, S. Feng, and M. Ma, Robust MPC for the constrainedsystem with polytopic uncertainty, International Journal ofSystems Science, 43(2), 2012, 248–258.
  19. [19] Y.Y. Cao and Z. Lin, Min-max MPC algorithm for LPV systemssubject to input saturation, IEE Proc.: Control Theory andApplications, 152(3), 2005, 266–272.
  20. [20] H. Huang, D. Li, Z. Lin, and Y. Xi, An improved robust modelpredictive control design in the presence of actuator saturation,Automatica, 47, 2011, 861–864.
  21. [21] F.Q. Rossi and R.K.H. Galvao, Robust predictive control ofwater level in an experimental pilot plant with uncertaininput delay, Mathematical Problems in Engineering, ArticleID 189456, 2014, 10 pages.
  22. [22] F.Q. Rossi, R. Waschburger, and R.K.H. Galvao, Determina-tion of the domain of attraction and regions of guaranteed costfor robust model predictive controllers based on linear matrixinequalities, Proc. UKACC International Conf. on Control,Cardiff, UK, 2012, 982–987.
  23. [23] M.S.M. Cavalca, Reconfigurable predictive control for accom-modation of faults (in Portuguese), Ph.D. Thesis, InstitutoTecnol´ogico de Aeron´autica, S˜ao Jos´e dos Campos, SP, Brazil,2011.
  24. [24] M.M. Kale and A.J. Chipperfield, Robust and stabilized MPCformulations for fault tolerant and reconfigurable flight control,Proc. IEEE International Symposium on Intelligent Control,Taipei, Taiwan, 2004, 222–227.
  25. [25] Z. Wan and M.V. Kothare, Robust output feedback model pre-dictive control using off-line linear matrix inequalities, Journalof Process Control, 12, 2002, 763–774.
  26. [26] V.T. Minh, F. Bin, and B.M. Hashim, Tracking setpoint robustmodel predictive control for input saturated and softened stateconstraints, International Journal of Control, Automation,and Systems, 9(5), 2011, 958–965.
  27. [27] Z. Wan and M.V. Kothare, Efficient scheduled stabilizingmodel predictive control for constrained nonlinear systems,International Journal of Robust and Nonlinear Control, 13(7),2003, 331–346.
  28. [28] R.J.M. Afonso and R.K.H. Galvao, Infeasibility handling inconstrained MPC, in T. Zheng (ed.), Frontiers of model pre-dictive control (Rijeka, Croatia: InTech, 2012), 47–64.
  29. [29] B. Kouvaritakis, M. Cannon, A. Karas, B. Rohal-Ilkiv, andC. Belavy, Asymmetric constraints with polytopic sets in MPCwith application to coupled tanks system, International Journalof Robust and Nonlinear Control, 14(4), 2004, 341–353.
  30. [30] G.F. Franklin, J.D. Powell, and M.L. Workman, Digital controlof dynamic systems, 3rd ed. (Menlo Park: Addison-Wesley,1997).24

Important Links:

Go Back