Hao Sun, Ning-Yang Wang, Hao Jiang, and Xiao-Ping Chen


  1. [1] D. Trivedi, C.D. Rahn, W.M. Kier, and I. D. Walker, Soft robotics: Biological inspiration, state of the art, and future research, Applied Bionics and Biomechanics, 5(3), 2008, 99–117.
  2. [2] A. Albu-Schaffer, O. Eiberger, et al., Soft robotics, Robotics & Automation Magazine, 15(3), 2008, 20–30.
  3. [3] S. Kajikawa, Development of multi-directional compliant joint module for human-care robot, International Journal of Robotics and Automation, 22 (1), 2007, 10–18.
  4. [4] Z. Li, et al., Development of hybrid joints for the compliant arm of human-symbiotic mobile manipulator, International Journal of Robotics and Automation, 20(3), 2005, 260–270.
  5. [5] R. Samatham, et al., Active polymers: An overview, in K.J. Kim and S. Tadokoro (eds.), Electroactive polymers for robotic applications (London: Springer, 2007), 1–36.
  6. [6] T. Wallmersperger, B. Kr¨oplin, and R.W. G¨ulch, Mod-elling and analysis of chemistry and electromechanics, inY. Bar-Cohen (ed.), Electroactive polymer (EAP) actuators as artificial muscles-reality, potential, and challenges,(Bellingham: SPIE Press, 2004), 335–362.
  7. [7] K. Meijer, Y. Bar-Cohen, R.J. Full, Biological inspiration for musclelike actuators of robots and biologically inspired intelligent robots (Bellingham: SPIE Press, 2003), 25–46.
  8. [8] K. Meijer, M. Rosenthal, R.J. Full, Muscle-like actuators? A comparison between three electroactive polymers, Proc. SPIE’s 8th Annual International Symposium on Smart Structures and Materials, Bellingham, WA, 2001, 7–15.
  9. [9] Y. Bar-Cohen, Electro-active polymers: Current capabilities and challenges, Proc. International Society for Optical Engineering Proceedings of SPIE, San Diego, CA, 2002, 1–7.
  10. [10] S. Daroogheha and T. Radhakrishnan, An analysis for a mini robot gripper using SMA springs, International Journal of Robotics and Automation, 22 (3), 2007, 244–251.
  11. [11] Y. Furuya and H. Shimada, Shape memory actuators forrobotic applications, Materials & Design, 12 (1), 1991, 21–28.
  12. [12] B. Wang, et al., Model simulation and position control experiments of pneumatic muscle with shape memory alloy braided sleeve, International Journal of Robotics and Automation, 28(1), 2013.
  13. [13] F. Ilievski, et al., Soft robotics for chemists, Angewandte Chemie, 123 (8), 2011, 1930–1935.
  14. [14] B. Mosadegh, et al., Pneumatic networks for soft robotics that actuate rapidly, Advanced Functional Materials, 24(15), 2014, 2163–2170.
  15. [15] H. Sun and X.-P. Chen, Towards Honeycomb PneuNets robots, Proc. 2nd International Conf. on Robot Intelligence Technology and Applications, Denver, CO, 2013, 331–340.
  16. [16] H. Sun, et al., A preliminary study of the HPN robot, Applied Mechanics and Materials, 575, 2014, 726–730. http://www.scientific.net/AMM.575.726.
  17. [17] D.E. Sadava, D.M. Hillis, H.C. Heller, and M. Berenbaum, Life: The science of biology: Volume III: Plants and animals, 10th ed. (New York: W.H. Freeman & Co Ltd, 2013).

Important Links:

Go Back