Carlos Magno B. de Araújo and Luiz H.P.C. Trondoli


  1. [1] J.L. Blackburn and T.J. Domin Protective relaying: principlesand applications (New York: CRC Press, 2015).
  2. [2] L.L. Grigsby, ed., Power system stability and control, Vol. 5(New York: CRC Press, 2012).
  3. [3] IEEE Guide for AC Generator Protection, in IEEE StdC37.102-2006 (Revision of IEEE Std C37.102-1995), 2006,1–177. doi: 10.1109/IEEESTD.2006.320495.
  4. [4] GAMESA Corporation, Presentation overview, 2015,
  5. [5] IEEE Recommended Practice for Excitation SystemModels for Power System Stability Studies, in IEEE Std421.5-2005 (Revision of IEEE Std 421.5-1992), 2006, 0_1-85.doi: 10.1109/IEEESTD.2006.99499.145
  6. [6] S. Chapman, Electric machinery fundamentals, 5 ed. (NewYork: McGraw-Hill Education, 2011).
  7. [7] A. Doria-Cerezo, V.I. Utkin, R.S. Munoz-Aguilar, andE. Fossas, Control of a stand-alone wound rotor synchronousgenerator: two sliding mode approaches via regulation of thed-voltage component, IEEE Transactions on Control SystemsTechnology, 20(3) 2012, 779–786. doi: 10.1109/TCST.2011.2142310.
  8. [8] G. Valverde and J.J. Orozco, Reactive power limits in dis-tributed generators from generic capability curves, 2014 IEEEPES General Meeting – Conference & Exposition, NationalHarbor, MD, 2014, 1–5. doi: 10.1109/PESGM.2014.6939359.
  9. [9] E.H. Enrique, Generation capability curves for wind farms,2014 IEEE Conf. Technologies for Sustainability (SusTech),Portland, OR, 2014, 103–106. doi: 10.1109/SusTech.2014.7046227.
  10. [10] GAMESA Corporation, Catalogo g9x de aerogeradores 2.0–2.5 MW, 2015,
  11. [11] Network Procedure – Submodule, 3.6 – Minimum technicalrequirements for the connection to the power transmissionfacilities, National System Operator (NSO), September, 2010.
  12. [12] Ferrer, Hector J. Altuve, and Edmund O. Schweitzer, eds.,Modern solutions for protection, control, and monitoring ofelectric power systems, Schweitzer Engineering Laboratories,2010.
  13. [13] S. Gdaim, A. Mtibaa, and M.F. Mimouni, Design andexperimental implementation of DTC of an induction ma-chine based on fuzzy logic control on FPGA, IEEE Transac-tions on Fuzzy Systems, 23(3), 2015, 644–655. doi: 10.1109/TFUZZ.2014.2321612.
  14. [14] S. Senapati, K. Das Bhattacharya, and J.K. Das, Applicationof phasor measurement unit in adaptive protection for loss ofexcitation in a generator, Power India international confer-ence (PIICON), 2014 6th IEEE, 5–7 December 2014, pp.1–5.doi: 10.1109/POWERI.2014.7117655.
  15. [15] A.P. De Morais, G. Cardoso, and L. Mariotto, An innovativeloss-of-excitation protection based on the fuzzy inference mech-anism, IEEE Transactions on Power Delivery, 25(4), 2010,2197–2204. doi: 10.1109/TPWRD.2010.2051462.
  16. [16] IEEE Standard Definitions for Excitation Systems for Syn-chronous Machines, in IEEE Std 421.1-2007 (Revision ofIEEE Std 421.1-1986), July 15, 2007, 1–33. doi: 10.1109/IEEESTD.2007.385319.
  17. [17] A. Tang, L. Yu, F. Han, and Z. Zhang, CORDIC-based FFTreal-time processing design and FPGA implementation, 2016IEEE 12th International Colloquium on Signal Processing &Its Applications (CSPA), Malacca City, 2016, 233–236.doi: 10.1109/CSPA.2016.7515837.
  18. [18] K. Saban, Xilinx stacked silicon interconnect technologydelivers breakthrough FPGA capacity, bandwidth, and powerefficiency, Xilinx White paper: Vertex-7 FPGAs, 2011.
  19. [19] B. Przybus Xilinx redefines power, performance, and designproductivity with three new 28 nm FPGA families: Virtex-7,Kintex-7, and Artix-7 Devices, Xilinx White Paper 2010.
  20. [20] Y. Chen and V. Dinavahi, Multi-FPGA digital hardwaredesign for detailed large-scale real-time electromagnetic tran-sient simulation of power systems, IET Generation, Trans-mission & Distribution, 7(5), 2013, 451–463. doi: 10.1049/iet-gtd.2012.0374.
  21. [21] Y. Chen and V. Dinavahi, Hardware emulation building blocksfor real-time simulation of large-scale power grids, IEEETransactions on Industrial Informatics, 10(1), 2014, 373–381.doi: 10.1109/TII.2013.2243742.

Important Links:

Go Back