Muwaffaq I. Alomoush


  1. [1] K.R. Padiyar, Power system dynamics stability and control,2nd ed. (Hyderabad, India: BS Publications, 2002).
  2. [2] E.V. Larsen and D.A. Swann, Applying power system stabilizers, Part I, II, III, IEEE Transactions Power Apparatus andSystems, 100(6), 1981, 3017–3046.
  3. [3] K. Bhattacharya, J. Nanda, and M.L. Kothari, Optimizationand performance analysis of conventional power system stabilizers, International Journal of Electrical Power & EnergySystems, 19(7), 1997, 449–458.
  4. [4] A. Choucha, A. Hellal, L. Mokrani, and S. Arif, New approach to the optimization of power system stabilizers: geneticalgorithm with dynamic constraints, Control and IntelligentSystems, 40(3), 2012, 129–143.
  5. [5] M. Soliman, A. Elshafei, F. Bendary, and W. Mansour, De-sign of a robust fuzzy power system stabilizer, Control andIntelligent Systems, 37(4), 2009, 227–234.
  6. [6] I.B.G. Manuaba, M. Abdillah, A. Priyadi, and M.H. Purnomo,Coordinated tuning of PID based PSS and AVR using bacte-rial foraging-PSOTVAC-DE algorithm, Control and IntelligentSystems, 43(3), 2015, 1480–1752.
  7. [7] V. Rajendran and S. Mahalingam, Optimal allocation andsizing of facts controllers using differential evolution algorithm,Control and Intelligent Systems, 41(3), 2013, 136–142.
  8. [8] R. Segal, M.L. Kothari, and S. Madnani, Radial basis function (RBF) network adaptive power system stabilizer, IEEETransactions on Power Systems, 15(2), 2000, 722–727.
  9. [9] M.A. Abido, Robust design of multi-machine power systemstabilizers using simulated annealing, IEEE Transactions onEnergy Conversion, 15(3), 2000, 297–304.
  10. [10] A.L.B. Do Bomfim, G.N. Taranto, and D.M. Falcao, Simultaneous tuning of power system damping controllers using genetic algorithms, IEEE Transactions on Power Systems, 15(1),2000, 163–169.
  11. [11] M.A. Abido and Y.L. Abdel-Magid, Optimal design of powersystem stabilizers using evolutionary programming, IEEETransactions on Energy Conversion, 17(4), 2002, 429–436.
  12. [12] M.A. Abido, Optimal design of power-system stabilizers usingparticle swarm optimization, IEEE Transactions on EnergyConversion, 17(3), 2002, 406–413.
  13. [13] Q. Zhao and J. Jian, Robust controller design for generatorexcitation systems, IEEE Transactions on Energy Conversion,10(2), 1995, 201–209.
  14. [14] G.P. Chen and O.P. Malik, Optimization technique for thedesign of a linear optimal power system stabilizer, IEEETransactions on Energy Conversion, 7(3), 1992, 453–459.
  15. [15] F. Rashidi, M. Rashidi, and H. Amiri, An adaptive fuzzysliding mode control for power system stabilizer, Proc. The29th Annual Conf. of the IEEE Industrial Electronics Society,2003, 626–630.
  16. [16] J. Wen, S. Cheng, and O.P. Malik, A synchronous generatorfuzzy excitation controller optimally designed with a geneticalgorithm, IEEE Transactions on Power Systems, 13(3), 1998,884–889.
  17. [17] N.G. Hingoran and L. Gyugyi, Understanding FACTS (NewYork: IEEE Press, 2000).
  18. [18] C.R. Fuerte-Esquivel, E. Acha, and H. Ambriz-Perez, A thyristor controlled series compensator model for the power flowsolution of practical power networks, IEEE Transactions onPower Systems, 15(1), 2000, 58–64.
  19. [19] X. Zhou and J. Liang, Overview of control schemes for TCSCto enhance the stability of power systems, IEE Proceedings-Generation, Transmission and Distribution, 14(2), 1999,125–134.
  20. [20] B.H. Li, Q.H. Wu, D.R. Turner, P.Y. Wang, and X.X. Zhou,Modeling of TCSC dynamics for control and analysis of powersystem stability, International Journal of Electrical Power &Energy Systems, 22(1), 2000, 43–49.
  21. [21] A.D. Del Rosso, C.A. Canizares, and V.M. Dona, A study ofTCSC controller design for power system stability improvement, IEEE Transactions on Power Systems, 18(4), 2003,1487–1496.
  22. [22] S. Panda and N.P. Padhy, MATLAB/SIMULINK based modelof single-machine infinite-bus with TCSC for stability studiesand tuning employing GA, International Journal of ComputerSciences and Engineering, 1(1), 2007, 50–59.
  23. [23] L.-J. Cai and I. Erlich, Simultaneous coordinated tuning ofPSS and FACTS damping controller in a large power system,IEEE Transactions on Power Systems, 20(1), 2005, 294–300.
  24. [24] J.J. Sanchez-Gasca, Coordinated control of two FACTS de-vices for damping interarea oscillations, IEEE Transactions onPower Systems, 13(2), 1998, 428–434.
  25. [25] S.K. Tso, J. Liang, Q.Y. Zeng, K.L. Lo, and X.X. Zhou,Coordination of TCSC and SVC for stability improvementof power systems, Proc. of the IEE Int. Conf. on Advancesin Power System Control, Operation and Management, HongKong, 1997, 371–376.
  26. [26] S. Panda and N.P. Padhy, Coordinated design of TCSC controller and PSS employing particle swarm optimization technique, International Journal of Electrical and Computer Engineering, 1(4), 2007.
  27. [27] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, GSA:A gravitational search algorithm, Information Sciences,179(13), 2009, 2232–2248.
  28. [28] S. Raja Balachandar and K. Kannan, Newton’s law of gravity-based search algorithms, Indian Journal of Science and Technology, 6(2), 2013.
  29. [29] T.N.T. Ibrahim, T. Marapan, S.H. Hasim, et al., A BriefAnalysis of Gravitational Search Algorithm (GSA) Publicationfrom 2009 to May 2013, Proc. Int. Conf. on Recent treads inEngineering & Technology (ICRET’ 2014), Batam, Indonesia,2014.
  30. [30] S. Duman, U. Guvenc, Y. Sonmez, and N. Yorukeren, Optimal power flow using gravitational search algorithm, EnergyConversion and Management, 59, 2012, 86–95.
  31. [31] D. Xue, Y. Chen, and D.P. Atherton, Linear feedback control:analysis and design with MATLAB (Philadelphia, PA: SIAM,2007).
  32. [32] A. Wright, Genetic algorithms for real parameters optimization,in J.E. Rawlines (ed.), Foundations of genetic algorithms (SanMateo, CA: Morgan Kaufmann, 1991).
  33. [33] J. Kennedy and R.C. Eberhart, Particle swarm optimization,Proc. The IEEE Int. Conf. on Neural Networks, Piscataway,NJ, 1995, 1942–1948.

Important Links:

Go Back