Learning to Classify Structured Data by Graph Propositionalization

T. Karunaratne and H. Boström (Sweden)


Machine Learning, Graph, Classification, Structured data


Existing methods for learning from structured data are limited with respect to handling large or isolated substructures and also impose constraints on search depth and induced structure length. An approach to learning from structured data using a graph based propositionalization method, called finger printing, is introduced that addresses the limitations of current methods. The method is implemented in a system called DIFFER, which is demonstrated to compare favorable to existing state-of-art methods on some benchmark data sets. It is shown that further improvements can be obtained by combining the features generated by finger printing with features generated by previous methods.

Important Links:

Go Back