Roughness Evaluation of Vine Leaf by Image Processing

Houda Bediaf, Ludovic Journaux, Rachid Sabre, and Frédéric Cointault


Texture, Leaf roughness, Computer Vision, Language Technologies


The study of leaf surface roughness is very important in the domain of precision spraying. It is one of the parameters that allow to reduce costs and losses of phytosanitary products and to improve the spray accuracy. Moreover, the leaf roughness is related to adhesion mechanisms of liquid on a surface. It can be used to define leaf nature surface (hydrophilic/hydrophobic). The main goal of this study is thus to estimate and to follow the evolution of leaf roughness using image processing and computer vision. The development and application of computer vision for measurement of surface leaf roughness using artificial neural networks will be described. The system for image acquisition of leaf surface consists of scanning electron microscope (SEM). The images of leaf surface are captured and analyzed to estimate the optical roughness. 2-D Fast Fourier Transform (FFT) algorithm and Co-occurrence Matrix are used for texture analysis. A multilayer perceptron (MLP) neural network is used to model and predict the optical roughness values.

Important Links:

Go Back