Optimal Flight Control on Cessna X Aircraft using Differential Evolution

Yamina Boughari, Ruxandra M. Botez, Florian Theel, and Georges Ghazi


Flight control, LQR, optimal control, heuristic algorithm, Differential Evolution, PID tuning


Usually, setting the appropriate optimal gains for Stability Augmentation System and Control Augmentation System for aircrafts depends on the system knowledge by the engineer. When this setting depends on tuning gains such as Proportional Integrator Derivative control or weights as in Linear Quadratic Regulator method, the engineer will use the trial and error process, which is time consuming procedure. In this research, a study of modeling and control system design will be conducted for a business aircraft using heuristic algorithm. A linear model of Cessna Citation aircraft was designed. Then a Linear Quadratic Regulator technology was used to achieve desirable dynamic characteristics with respect to the flying qualities requirements on the stability augmentation system for the Cessna Citation X aircraft. The Proportional Integral controller was further used in the Control Augmentation System, the weighting matrix of the LQR method and the PI parameters were optimised by using the differential evolutions method. The heuristic algorithm here used has given very good results. This algorithm was used in this form for the first time to optimize linear quadratic regulation and proportional Integral controllers on an aircraft control, using one fitness function.

Important Links:

Go Back