ROBUST TRACKING AND MODEL FOLLOWING OF TIME-DELAY SYSTEMS

M.-C. Pai∗

References

  1. [1] K.K. Shyu & Y.C. Chen, Robust tracking and model following for uncertain time-delay systems, International Journal Control, 62, 1995, 589–600.
  2. [2] S. Oucheriah, Robust tracking and model following of uncertain dynamic delay systems by memoryless linear controllers, IEEE Transactions on Automatic Control, 44, 1999, 1473–1477.
  3. [3] A.M.H. Basher, Linear controller for robust tracking of uncertain time-delay system, Proc. IEEE Southeastcon ’99., Lexington, Kentucky, USA, 1999, 1–9.
  4. [4] M.L. Ni, M.J. Er, W.E. Leithead, & D.J. Leith, Robust tracking controllers of uncertain delay, Proc. 39th IEEE Conf. on Decision and Control, Sydney, Australia, 2000, 1539–1543.
  5. [5] M.L. Ni, M.J. Er, W.E. Leithead, & D.J. Leith, New approach to the design of robust tracking and model following controller for uncertain delay systems, IEE Proceedings-Control Theory and Applications, 148(6), 2001, 472–477.
  6. [6] Y.D. Zhao, G.Y. Tang, & C. Li, Optimal output tracking control for nonlinear time-delay systems, Proc. 6th World Congress on Intelligent Control and Automation, Dalian, China, 2006, 757–761.
  7. [7] C. Lin, Q.G. Wang, & T.H. Lee, H∞ output tracking control for nonlinear systems via T-S fuzzy model approach, IEEE Transactions on Systems, Man, and Cybernetics, 36(2), 2006, 450–457.
  8. [8] Z. Qu, Z. Du, & Z. Liu, Adaptive fuzzy control for SISO nonlinear time-delay systems, Proc. 26th Chinese Control Conf., Zhangjiajie, Hunan, China, 2007, 246–249.
  9. [9] Q.K. Li, G.M. Dimirovski, & J. Zhao, Robust tracking control for switched linear systems with time-varying delays, American Control Conference, Seattle, Washington, USA, 2008, 1576– 1581.
  10. [10] H. Wu, Robust model following controllers guaranteeing zerotracking error for uncertain systems including delayed state perturbations, Proc. IEEE International Conf. on Control Applications, Mexico City, Mexico, 2001, 1054–1059. 142
  11. [11] H. Wu, Adaptive robust tracking and model following of uncertain dynamical systems with multiple time-delays, IEEE Transactions on Automatic Control, 49, 2004, 611–616.
  12. [12] S.M. Song, X.L. Chen, & W.Y. Qiang, Robust control for model following of uncertain dynamic time delay system, Proc. Second International Conf. on Machine Learning and Cybernetics, Xi’an, China, 2003, 928–933.
  13. [13] B. Drazenovic’, The invariance condition in variable structure systems, Automatica, 5, 1969, 287–295.
  14. [14] V.I. Utkin, Variable structure systems with sliding modes, IEEE Transactions on Automatic Control, 22, 1977, 212–222.
  15. [15] J.Y. Hung, W. Gao, & J.C. Hung, Variable structure control: a survey, IEEE Transactions on Industrial Electronic, 40(5), 1993, 2–22.
  16. [16] J.H. Kim, E.T. Jeung, & H.B. Park, Robust control for parameter uncertain delay systems in state and control input, Automatica, 32(9), 1996, 1337–1339.
  17. [17] Y. Xia & Y. Jia, Robust sliding-mode control for uncertain time-delay systems: an LMI approach, IEEE Transactions on Automatic Control, 48(6), 2003, 1086–1092.
  18. [18] X. Li & R.A. DeCarlo, Robust sliding mode control of uncertain time delay systems, International Journal of Control, 76(13), 2003, 1296–1305.
  19. [19] Z. Xiang, Q. Chen, & W. Hu, Robust mixed H2/H∞ control for uncertain singular systems with state delay, Control and Intelligent Systems, 34(2), 2006, 119–124.
  20. [20] M.C. Pai, Dynamic output feedback sliding mode control for uncertain systems with state and input delays, Control and Intelligent Systems, 36(1), 2008, 92–97.
  21. [21] T.H. Hopp & W.E. Schmitendorf, Design of a linear controller for robust tracking and model following, ASME Journal of Dynamic Systems, Measurement, and Control, 112, 1990, 552–558.
  22. [22] S. Boyd, L.E. Ghaoui, E. Feron, & V. Balakrishnan, Linear matrix inequalities in system and control theory (New York, PA: SIAM Studies in Applied Mathmatics, 1994).

Important Links:

Go Back