R. Yue, J. Xiao, K. Li, J. Du, and S. Wang


  1. [1] C. Li, P. Ma, X. Gao, & Z. Cao, A new six-wheel lunar robot for uneven surface, Drive System Technique, 19(1), 2005, 9–13. (in Chinese)
  2. [2] A. Salemo, S. Ostrovskaya, & J. Angeles, The development of quasiholonomic wheeled robots, Proc. 2002 IEEE International Conference on Robotics and Automation, Washington, DC, USA, 2002, 3514–3520.
  3. [3] D. Bickler, Roving over Mars, Mechanical Engineering, 1998 [Online]. Available at: backissues/membersonly/april98/features/mars/mars.html
  4. [4] H. Eisen, Mechanical design of the Mars pathfinder mission, Proc. 7th European Space Mechanisms and Tribology Symposium, ESA Headquarters, Noordwijk, The Netherlands, 1997, 11–17.
  5. [5] R. Lindemann, L. Reid, & C. Vorhees, Mobility sub-system for the exploration technology Rover, Proc. Lockheed Martin Missles & Space, American Mechanisms Symposium, Pasadena, CA, USA, NASA/CP-1999-209259, 1999, 115–130.
  6. [6] P. Schenker, T. Huntsberger, P. Pirjanian, E. Baumgartner, & E. Tunstel, Planetary rover developments supporting Mars exploration, sample return, and future human–robotic colonization, Autonomous Robots, 14(2–3), 2003, 103–126.
  7. [7] R.A. Lindemann, D.B. Bickler, B. Harrington, G.M. Ortiz, & C.J. Voorhees, Mars exploration rover mobility development, Robotics & Automation Magazine, IEEE, 13(2), 2006, 19–26.
  8. [8] T. Kubota, Y. Kuroda, Y. Kunii, & I. Nakatani, Small, lightweight rover Micro5 for lunar exploration, Acta Astronautica, 52(2–6), 2003, 447–453.
  9. [9] F. Liu, J. Chen, P. Ma, & Z. Cao, Research Status and development trend towards planetary exploration robots, ROBOT, 24(3), 2002, 268–275 (in Chinese).
  10. [10] A.S. Boxerbaum, J. Oro, G. Peterson, & R. Quinn, The latest generation whegs robot features a passive compliant body joint, Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 2008, 1636–1641.
  11. [11] U. Saranli, M. Buehler, & D.E. Koditschek, RHex: a simple and highly mobile hexapod robot, The International Journal of Robotics Research, 20(7), 2001, 616–631.
  12. [12] D. Goldman, H. Komsuoglu, & D. Koditschek, March of the Sandbots, IEEE Spectrum, 2009, 26–31.
  13. [13] P. Tantichattanont, S. Songschon, & S. Laksanacharoen, Quasistatic analysis of a leg-wheel hybrid vehicle for enhancing stair climbing ability, Proc. IEEE International Conference on Robotics and Biomimetics, Sanya, China, 2007, 1601–1605.
  14. [14] A. Velimirovic, M. Velimirovic, V. Hugel, A. Iles, & P. Blazevic, A new architecture of robot with ‘wheels-with-legs’ (WWL), Proc. 5th International Workshop on Advanced Motion Control, Coimbra, Portugal, 1998, 434–439.
  15. [15] D. Apostolopoulos, M.D. Wagner, C. Leger, & J. Jones, Experimental characterization of a robotic inflatable wheel, Proc. 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space, Munich, Germany, 2005.
  16. [16] Z. Deng, H. Gao, M. Hu, & S. Wang, Design of lunar rover with planetary wheel for surmount obstacle, Journal of Harbin Institute of Technology, 35(2), 2003, 203–213 (in Chinese).
  17. [17] Z. Deng, H. Gao, S. Wang, & M. Hu, Analysis of climbing obstacle capability of lunar rover with planetary wheel, Journal of Beijing University of Aeronautics and Astronautics, 30(13), 2004, 197–201 (in Chinese).
  18. [18] R. Yue, S. Wang, Z. Jiao, & R. Kang, Design and performance simulation of a new type wheel with claws, Journal of Beijing University of Aeronautics and Astronautics, 33(12), 2007, 1408–1411 (in Chinese).

Important Links:

Go Back