STEREO VISION TECHNOLOGIES FOR CHINA’S LUNAR ROVER EXPLORATION MISSION

Minglei Li, Zezhou Sun, Shaochuang Liu, Youqing Ma, Hao Ma, Changming Sun, and Yang Jia

References

  1. [1] Z. Sun, H. Zhang, and Y. Jia, Technological advancements and promotion roles of Chang’e-3 lunar probe mission, Science China Technological Sciences, 56(11), 2013, 2702–2708.
  2. [2] W. Wan, Z. Liu, K. Di, B. Wang, and J. Zhou, A cross-site visual localization method for Yutu rover, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-4, 2014, 279–284.
  3. [3] H. Moravec, The Stanford cart and the CMU Rover, in I.J. Cox and G.T. Wilfong (eds.), Autonomous Robot Vehicles, (New York, NY: Springer-Verlag, 1990), 407–419.
  4. [4] C. Thorpe, M. Hebert, T. Kanade, and S. Shafer, Toward autonomous driving: The CMU Navlab, IEEE Expert, 6(4), 1991, 31–52.
  5. [5] L. Matthies, Stereo vision for planetary rovers: Stochastic modeling to near real-time implementation, International Journal of Computer Vision, 8(1), 1992, 71–91.
  6. [6] S. Goldberg, M. Maimone, and L. Matthies, Stereo vision and rover navigation software for planetary exploration, Aerospace Conference Proceedings, 5, 2002, 2025–2036.
  7. [7] R. Volpe, T. Estlin, S. Laubach, C. Olson, et al., Enhanced Mars rover navigation techniques, Proc. IEEE Conf. on Robotics and Automation, San Francisco, CA, 2000, 926–931.
  8. [8] C. Olson, L. Matthies, J. Wright, R. Li, et al., Visual terrain mapping for Mars exploration, Computer Vision and Image Understanding, 105(1), 2007, 73–85.
  9. [9] L. Matthies, M. Maimone, A. Johnson, Y. Cheng, et al., Computer vision on Mars, International Journal of Computer Vision, 75(1), 2007, 67–92.
  10. [10] J. Wright, F. Hartman, S. Maxwell, B. Cooper, et al., Updates to the rover driving tools for Curiosity, Proc. 8th IEEE Conf. on System of Systems Engineering, Maui, HI, 2013, 147–152.
  11. [11] C. Fraser, E. Baltsaviasb, and A. Gruenb, Processing of Ikonos imagery for submetre 3D positioning and building extraction, ISPRS Journal of Photogrammetry and Remote Sensing, 56(3), 2002, 177–194.
  12. [12] H. Hirschmuller, Accurate and efficient stereo processing by semi-global matching and mutual information. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, San Diego, CA, 2005, 807–814.
  13. [13] Y. Xiong and L. Matthies, Error analysis of a real-time stereo system, Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, San Juan, 1997, 1087–1093.
  14. [14] C. Harris and M. Stephens, A combined corner and edge detector, Proc. 4th Alvey Vision Conference, 1988, 147–151.
  15. [15] M. Lampton, Damping–undamping strategies for the Levenberg–Marquardt nonlinear least-squares method, Computer in Physics Journal, 11(1), 1997, 110–115.
  16. [16] M. Vergauwen, M. Pollefeys, and L. Van Gool, A stereo-vision system for support of planetary surface exploration, Machine Vision and Applications, 14(1), 2003, 5–14.
  17. [17] P. Ignacio, S. Angel, and V. Ljubo, Robust visual odometry for complex urban environments, IEEE Intelligent Vehicles Symposium Proc., Eindhoven, Netherlands, 2008, 440–445.
  18. [18] S. Atsushi, T. Yuya, and K. Yoji, Efficient solution to 6DOF localization using unscented Kalman filter for planetary rovers, Proc. IEEE/RSJ International Conf. on Intelligent Robots and Systems, St. Louis, MO, 2009, 4154–4159.
  19. [19] R. Li, K. Di, A. Howard, L. Matthies, et al., Rock modeling and matching for autonomous long-range mars rover localization, Journal of Field Robotics, 24(3), 2007, 187–203.
  20. [20] J. Morel and G. Yu, ASIFT: A new framework for fully affine invariant image comparison, SIAM Journal on Imaging Sciences, 2(2), 2009, 438–469.

Important Links:

Go Back