Junmin Li, Jinge Wang, Simon X. Yang and Shiwei Jia


  1. [1] Z.W. Liang and Y.Y. Chen, Just-in-time cooperative simul-taneous localization and mapping: A robust particle filterapproach, International Journal of Robotics & Automation,39(2), 2014, 155–161.
  2. [2] S. Sajad, P. Liam, T. Michael, and T. Michael, Occupancy gridmap merging for multiple robot simultaneous localization andmapping, International Journal of Robotics & Automation,30(2), 2015, 149–157.
  3. [3] F. Auat Cheein, G. Steiner, G. Perez Paina, and R. Carelli,Optimized EIF-SLAM algorithm for precision agriculture map-ping based on stems detection, Computers and Electronics inAgriculture, 78(2), 2011, 195–207.
  4. [4] V. Ila, M. Josep Porta, and A. Juan, Amortized constant timestate estimation in Pose SLAM and hierarchical SLAM usinga mixed Kalman-information filter, Robotics and AutonomousSystems, 59(5), 2011, 310–318.
  5. [5] H. Kwon, M. Khalil, A. Yousef, and C. Kak, Building 3Dvisual maps of interior space with a new hierarchical sensorfusion architecture, Robotics and Autonomous Systems, 61(8),2013, 749–767.
  6. [6] L. Paz, J. Tardos, and J. Neira, Divide and conquer: EKFSLAM in o (n), IEEE Trans Robot, 24(5), 2008, 1107–1120.
  7. [7] B. Khaleghi, A. Khamis, and F.O. Karray, Multisensor datafusion: A review of the state-of-the-art, Information Fusion,14(1), 2013, 28–44.
  8. [8] X.G. Jian, H.S. Jia, and L.D. Shi, Advances on multi-sensor in-formation fusion technologies, Chinese Journal of ConstructionMachinery, 7(2), 2009, 227–232.
  9. [9] X.D. Li, J. Dezert, and C.F. Smarandache, Evidence supportingmeasure of similarity for reducing the complexity in informationfusion, Information Sciences, 181(1), 2011, 1818–1835.
  10. [10] Z.G. Liu, D. Jean, and Q. Pan, Combination of sources ofevidence with different discounting factors based on a newdissimilarity measure, Decision Support Systems, 52(1), 2011,133–141.
  11. [11] A.L. Jousselme and P. Maupin, Distances in evidence the-ory: Comprehensive survey and generalizations, InternationalJournal of Approximate Reasoning, 53(1), 2012, 118–145.
  12. [12] Y. He, L.F. Hu, and X. Guan, New method for measuring thedegree of conflict among general basic probability assignments,Science China: Information Sciences, 55(2), 2012, 312–321.
  13. [13] X.J. Shen, Y.T. Luo, and Y.M. Zhu, Globally optimal dis-tributed Kalman filtering fusion, Science China: InformationScience, 55(3), 2012, 512–529.
  14. [14] W.E. Grimson, Model-based recognition and location fromsparse range or tactile data, Robotics Research, 3(3), 1984,3–35.
  15. [15] M. Daily, J. Harris, and D. Keirsey, Autonomous cross-countrynavigation with the ALV, Proceedings of IEEE Conference onRobotics and Automation, 1988, 718–726.
  16. [16] F.A. Moreno, J.L. Blanco, and J. Gonzalez, Stereo visionspecific models for particle filter-based SLAM, Robotics andAutonomous Systems, 57(1), 2009, 955–970.
  17. [17] Mei Jin, Jinge Zhao, Ju Jin, Guohui Yu, and Wenchao Li, Theadaptive Kalman filter based on fuzzy logic for inertial motioncapture system, Measurement, 49(3), 2014, 196–204.
  18. [18] J. M. Li, J.G. Wang, and W.T. Zhou, Research on informationtechnology with robot pose estimation and accuracy analysisbased on stereo vision, Proceedings-IEEE 9th InternationalConference on Mobile Ad-Hoc, Dalian, CA, 2013, 555–559.249

Important Links:

Go Back