Qing Guo, Yi Zhang, and Dan Jiang


  1. [1] J.R. Steger, A design and control methodology for humanexoskeletons (Berkeley, CA: University of California, 2006,36–44).
  2. [2] Z.X. Wang, Raytheon launched XOS2 second-generation ex-oskeleton device, Light weapons, 23(1), 2010, 24–44.
  3. [3] SPENCER A, The report of production display for “HULCmade in Lockheed Martin, http://www.lockheedmartin.com,10, 2010.
  4. [4] J.F. Veneman, R. Ekkelenkamp, R. Kruidhof, et al., Design of a series elastic – and Bowden cable-based actuation system for use as torque – actuator in exoskeleton-type training, Proc. of the 9th International Conf. on Rehabilitation Robotics, Chicago, IL, USA, June 28–July 1, 2005.
  5. [5] N. Aphiratsakun and M. Parnichkun, Balancing control ofleg exoskeleton using ZMP-based Jacobian compensation, In-ternational Journal of Robotics & Automation, 25(4), 2010,359–371.
  6. [6] Y.J. Fan, Z. Guo, and Y.H. Yin, SEMG-based neuro-fuzzycontroller for a parallel ankle exoskeleton with proprioception, International Journal of Robotics & Automation, 26(4), 2011, 450–460.
  7. [7] K.H. Low, Y. Yin, An integrated lower exoskeleton system towards design of a portable active orthotic device, International Journal of Robotics & Automation, 22(1), 2007, 32–43.
  8. [8] Y.S. Kim, J. Lee, S. Lee, et al., A force reflected exoskeleton-type master arm for human-robot interaction, IEEE Transactions on Systems, Man, and Cybernetics-Part A: System and Humans, 35(2), 2005, 198–212.
  9. [9] T.C. Bulea, R. Kobetic, M.L. Audu, et al., Finite state control of a variable impedance hybrid neuroprosthesis for locomotion after paralysis, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(1), 2013, 141–151.
  10. [10] S.M.M. Rossi, N. Vitiello, T. Lenzi, et al., Sensing pressure distribution on a lower-limb exoskeleton physical, human-machine interface, Sensors, 11, 2011, 207–227.
  11. [11] R. Ronsse, N. Vitiello, T. Lenzi, et al., Human–robot synchrony flexible assistance using adaptive oscillators, IEEE Transactions on Biomedical Engineering, 58(4), 2011, 1001–1012.
  12. [12] J.C. Arevalo, E. Garcia, Impedance control for legged robots an insight into the concepts involved, IEEE Transactions on Systems, Man, and Cybernetics-Part C: Application and Reviews, 42(6), 2012, 1400–1411.
  13. [13] A. Chiri, N. Vitiello, F. Giovacchini, et al., Mechatronic design and characterization of the index finger module of a hand exoskeleton for poststroke rehabilitation, IEEE Transactions on Mechatronics, 17(5), 2012, 884–894.
  14. [14] T. Choi, B.S. Choi, K.H. Seo, Position and compliance control of a pneumatic muscle actuated manipulator for enhanced safety, IEEE Transactions on Control Systems Technology, 19(4), 2011, 832–842.
  15. [15] S.H. Hyon, A motor control strategy with virtual musculoskeletal systems for compliant anthropomorphic robots, IEEE Transactions on Mechatronics, 14(6), 2009, 677–688.
  16. [16] L.N. Sun, Q.L. Li, M.X. Kong, et al., Interactive rehabilitation training of 5-DOF upper limbs rehabilitation robot arm control strategy, Journal of Mechanical Engineering, 44(9), 2008, 169–176.
  17. [17] Z.Y. Yang, Y.S. Zhang, W.J. Gu, et al., Bone clothing sensitivity amplification control, Computer Simulation, 27(1), 2010, 177–180.
  18. [18] H. Cao, X.W. Meng, Z.Y. Ling, et al., Two-legged robotexoskeleton plantar pressure measurement system, Journal ofSensors and Actuators, 23(3), 2010, 326–330.
  19. [19] X.M. Li, X.J. Li, and J. Han, Study of the relationship among human feet long, feet wide and tall, Journal of Mathematical Medicine, 21(2), 2008, 228–233.
  20. [20] C.L. Vaughan, B.L. Davis, and J.C. Connor, Dynamics ofhuman gait, 2nd ed. (Cape town: Kiboho, 1999), 15–44.
  21. [21] S. Kawamura and M. Svinin, Advances in robot control: from everyday physics to human-like movements (Berlin: Springer-Verlag, 2010, 220–226).
  22. [22] Z.S. Wu, Hydraulic control system (Higher Education Press, 2008, 41–46).

Important Links:

Go Back