Jiatao Ding, Xiaohui Xiao, and Yang Wang


  1. [1] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, Development of Honda humanoid robot, Proc. 1998 IEEE Conf. on Robotics and Automation, Leuven, CA, 1998, 1321–1326.
  2. [2] H. Hirukawa et al., Humanoid robotics platforms developed in HRP, Robotics and Autonomous Systems, 48(19), 2004, 165–175.
  3. [3] M. Ginger, K. L¨offler, and F. Pfeiffer, Towards the design of jogging robot, Proc. 2001 IEEE Conf. on Robotics and Automation, Seoul, CA, 2001, 4140–4145.
  4. [4] I.S. Lim, Kwon O. Kwon, and J.H. Park, Gait optimization of biped robots based on human motion analysis, Robotics and Autonomous Systems, 62(2), 2014, 229–240.
  5. [5] J.H. Kim et al., Generating effective whole-body motionsof a human-like mechanism with efficient ZMP formulation,International Journal of Robotics and Automation, 24(2), 2009, 125–136.
  6. [6] R. Tedrake, T.W. Teresa, and H.S. Seung, Stochastic policy gradient reinforcement learning on a simple 3D biped, Proc. 2002 IEEE/RSJ Conf. on Intelligent Robots and Systems, Sendai, CA, 2004, 2849–2854.
  7. [7] C. Chevallereau, J.W. Grizzle, and C.L. Shih, Asymptotically stable walking of a five-link under actuated 3-D bipedal robot, IEEE Transactions on Robotics, 25(1), 2009, 37–50.
  8. [8] Q. Huang et al., Planning walking patterns for a biped robot, IEEE Transactions on Robotics and Automation, 3 (17), 2001, 280–289.
  9. [9] M. Vukobratovic and B. Borovac, Zero-moment-point-thirty five years of its life, International Journal of Humanoid Robotics, 1(1), 2004, 157–173.
  10. [10] K. Hara, R. Yokogawa, and K. Sadao, Dynamic control ofbiped locomotion robot for disturbance on lateral plane, in, Proc. 72nd Meeting of Japan Society of Mechanical Engineers, Kansai, CA, 1997, pp. 10-37–10-38.
  11. [11] S. Kagami et al., A fast generation method of a dynamically stable humanoid robot trajectory with enhanced ZMP constraint, Proc. 2000 IEEE/RAS Conf. on Humanoid Robotics, CA, 2000.
  12. [12] K. Nishiwaki et al., Online generation of humanoid walking motion based on a fast generation method of motion pattern that follows desired ZMP,Proc. 2002 IEEE/RSJ Conf. on Intelligent Robots and Systems, Lausanne, CA, 2002, 2684–2689.
  13. [13] S. Kajita et al., Biped walking pattern generation by using preview control of zero-moment point, Proc. 2003 IEEEConf. on Robotics and Automation, Taipei, CA, 2003,1620–1626.
  14. [14] E. Cuevas, D. Zaldivar, M. P´erez-Cisneros, and M. Ram´ırez-Orteg´on, Polynomial trajectory algorithm for a biped robot, International Journal of Robotics and Automation, 25(4), 2010, 294–303.
  15. [15] K. Nishiwaki and S. Kagami, Simultaneous planning of CoM and ZMP based on the preview control method for onlinewalking control, Proc. 11th IEEE/RAS Conf. on HumanoidRobotics, Bled, CA, 2011, 745–751.
  16. [16] J. Park and Y. Youm, General ZMP preview control for bipedal walking, Proc. 2007 IEEE Conf. on Robotics and Automation, Rome, CA, 2007, 2682–2687.
  17. [17] S. Shimmyo, T. Sato, and K. Ohnishi, Biped walking pattern generation by using preview control based on three-mass model, IEEE Transactions on Industrial Electronics, 60(11), 2013, 5137–5147.
  18. [18] K. Mitobe, G. Capi, and Y. Nasu, A new control for walking robots based on angular momentum, Mechatronics, 14(2), 2004, 163–174.
  19. [19] R. Cisneros, K. Yokoi, and E. Yoshida, Yaw moment com-pensation by using full body motion, Proc. 2014 IEEEConf. on Mechatronics and Automation, Tianjin, CA, 2014,119–125.
  20. [20] R. Beranek, H. Fung, and M. Ahmadi, Disturbance com-pensation in bipedal locomotion using ground reaction forcefeedback and the CMP, International Journal of Robotics andAutomation, 30(3), 2015, 238–246.
  21. [21] J.Y. Kim, I.W. Park, and J.H. Oh, Experimental realization of dynamic walking of the biped humanoid robot KHR-2 using zero moment point feedback and inertial measurement, Advanced Robotics, 20(6), 2006, 707–736.
  22. [22] S. Czarnetzki, S. Kerner, and O. Urbann, Observer-based dynamic walking control for biped robots, Robotics and Autonomous Systems, 57(8), 2009, 839–845.
  23. [23] O. Urbann and S. Tasse, Observer based biped walking control, a sensor fusion approach, Autonomous Robots, 35(1), 2013, 37–49.
  24. [24] Tzuu-Hseng S. Li, Yu-Te Su, Shao-Wei Lai, and Jhen-Jia Hu, Walking motion generation, synthesis, and control for biped robot by using PGRL, LPI, and fuzzy logic, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 41(3), 2012, 736–748.
  25. [25] C.M. Lin and C.H. Chen, Robust fault-tolerant control for a biped robot using a recurrent cerebellar model articulation controller, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 37(1), 2007, 110–123.
  26. [26] Z. Liu, Y. Zhang, and Y. Wang, A type-2 fuzzy switching controls system for biped robots, IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 37(6), 2007, 1202–1213.
  27. [27] M.I. El-Hawwary and A.L. Elshafei, Robust adaptive fuzzy control of a two-link robot arm, International Journal of Robotics and Automation, 21(4), 2006, 266–272.
  28. [28] T. Mai, Y. Wang, and T. Ngo, Adaptive tracking controlfor robot manipulators using fuzzy wavelet neural networks,International Journal of Robotics and Automation, 30(1), 2015, 26–39.
  29. [29] T. Katayama, T. Ohki, T. Inoue, and T. Kato, Design ofan optimal controller for a discrete time system subject topreviewable demand, International Journal of Control, 41(3), 1985, 677–699.
  30. [30] Z. Qi, S. Peng, L. Jinjun, and X. Shengyuan, Adaptiveoutput-feedback fuzzy tracking control for a class of nonlinear systems, IEEE Transactions on Fuzzy Systems, 19(5), 2011, 972–982.
  31. [31] S.B. Niku, Introduction to robotics: Analysis, systems, applications, New Jersey: Prentice Hall, 7, 2001.
  32. [32] N. Kofinas, E. Orfanoudakis, and M.G. Lagoudakis, Com-plete analytical forward and inverse kinematics for the NAOhumanoid robot, Journal of Intelligent and Robotic Systems,77(2), 2015, 251–264.

Important Links:

Go Back