Binghua Guo, Hongyue Dai, and Zhonghua Li


  1. [1] L. Maddalena and A. Petrosino, A self-organizing approach to background subtraction for visual surveillance applications, IEEE Transactions on Image Processing, 17(7), 2008, 1168–1177.
  2. [2] R.J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam, Image change detection algorithms: A systematic survey, IEEE Transactions on Image Processing, 14(3), 2005, 294–307.
  3. [3] S. Mota, E. Ros, E.M. Ortigosa, and F.J. Pelayo, Bio-inspired motion detection for a blind spot overtaking monitor, International Journal of Robotics and Automation, 19(4), 2004, 190–196.
  4. [4] Q. Baig, M. Perrollaz, and C. Laugier, A robust motion detection technique for dynamic environment monitoring: A framework for grid-based monitoring of the dynamic environment, IEEE Robotics & Automation Magazine, 21(1), 2014, 40–48.
  5. [5] M. Kamaraj, Balakrishnan, An improved motion detection and tracking of active blob for video surveillance, Proc. 4th ICCCNT, Tiruchengode, India, 2013, 1–7.
  6. [6] T. Moeslund, A. Hilton, and V. Kruger, A survey of advances in vision-based human motion capture and analysis, Computer Vision and Image Understanding, 104(2–3), 2006, 90–126.
  7. [7] O. Marques, L.M. Mayron, G.B. Borba, and H.R. Gamba, An attention-driven model for grouping similar images with image retrieval applications, EURASIP Journal of Advances in Signal Processing, 2007(1) 2007, 1–17.
  8. [8] D. ´Culibrk, M. Mirkovi´c, V. Zlokolica, M. Pokri´c, V. Crnojevi´c, and D. Kukolj, Salient motion features for video quality assessment, IEEE Transactions on Image Processing, 20(4), 2011 948–958.
  9. [9] Y. Yu, J. Gu, G.K. Mann, R.G. Gosine, Development and evaluation of object-based visual attention for automatic perception of robots, IEEE Transactions on Automation Science and Engineering, 10(2), 2013, 365–379.
  10. [10] L. Itti, C. Koch, and E. Niebur, A model of saliency-based visual attention for rapid scene analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11), 1998, 1254–1259.
  11. [11] Y. Wakuda, K. Sekiyama, and T. Fukuda, Dynamic event interpretation and description from visual scene based on cognitive ontology for recognition by a robot, International Journal of Robotics & Automation, 24(3), 2009, 263–279.
  12. [12] A. Kimura, R. Yonetani, T. Hirayama, Computational models of human visual attention and their implementations: A survey, IEICE Transactions on Information and Systems, E96–D(3), 2013, 562–578.
  13. [13] S. Frintrop, E. Rome, H.I. Christensen, Computational visual attention systems and their cognitive foundations: A survey, ACM: Transaction on Applied Perception, 7(1), 2010, 1–39.
  14. [14] C. Koch, S. Ullman, Shifts in selective visual attention: towards the underlying neural circuitry, Human Neurobiology, 4(4), 1985, 219–227.
  15. [15] L. Itti and P. Baldi, Bayesian surprise attracts human attention, Vision Research, 49(10), 2009, 1295–306.
  16. [16] P. Baldi and L. Itti, Of bits and wows: A Bayesian theory of surprise with applications to attention, Neural Networks, 23(5), 2010, 649–666.
  17. [17] M.T. L´opez, M.A. Fernández, A. Fernández-Caballero, J. Mira, and A. Delgado, Dynamic visual attention model in image sequences, Image and Vision Computing, 25(5), 2007, 597–613.
  18. [18] M. Mancas, N. Riche, J. Leroy, and B. Gosselin, Abnormal motion selection in crowds using bottom-up saliency, Proc. 18th IEEE Int. Conf. on Image Processing, Brussels, Belgium, 2011, 229–232.
  19. [19] D. Culibrk, S. Sladojevic, N. Riche, M. Mancas, and V. Crnojevic, Data-driven approach to dynamic visual attention modelling, Proc. SPIE, Brussels, Belgium, 2012, 84360N1-11.
  20. [20] A. Bur. Computer models of dynamic visual attention, Doctoral Dissertation, Université de Neuchatel, Switzerland, 2009.
  21. [21] A. Bur, P. Wurtz, R.M. Müri, and H. Hügli, Dynamic visual attention: Motion direction versus motion magnitude, Proc. IS&T/SPIE 20th Annual Symposium on Electronic Imaging, San Jose, USA, 2008, 1–12.
  22. [22] R. Szeliki, Computer vision: algorithms and applications, 1st ed. (USA: Springer, 2010).
  23. [23] M. Zuliani, C.S. Kenney, and B.S. Manjunath, The multiRANSAC algorithm and its application to detect planar homographies, Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005, 153–156.
  24. [24] D. Comaniciu and P. Meer, Mean shift: a robust approach toward feature space analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), 2002, 603–619.
  25. [25] A. Murarka. Building safety maps using vision for safe local mobile robot navigation, Doctoral Dissertation, The University of Texas at Austin, Austin, 2009.
  26. [26] D.G. Lowe. Distinctive image features from scale-invariant keypoints, International Journal of Computer Vision, 60(2), 2004, 91–110.
  27. [27] H. Bay, T. Tuytelaars, and L. Van Gool, Surf: speeded up robust features, Proc. European Conf. Computer Vision, Berlin, Springer, 2006, 404–417.

Important Links:

Go Back